author: "Techsum"
title: "OpenSSL Engine加载"
date: 2020-05-07T14:03:23
description: "OpenSSL Engine插件的加载过程源码分析"
draft: false
hideToc: false
enableToc: true
enableTocContent: false
author: Techsum
categories:
- 密码学
tags: - OpenSSL
问题来源
OpenSSL Engine是啥,在这个地方就不细说了,资料很多,可以看看知乎这篇中文文档:
https://zhuanlan.zhihu.com/p/70444766
英文文档:
直接进入正题,我们首先查看一个OpenSSL Engine的例子:
https://github.com/nibrunie/OSSL_EngineX
直接查看bind代码:
static int bind(ENGINE* e, const char* id)
{
int ret = 0;
if (!ENGINE_set_id(e, engine_id)) {
fprintf(stderr, "ENGINE_set_id failed\n");
goto end;
}
if (!ENGINE_set_name(e, engine_name)) {
printf("ENGINE_set_name failed\n");
goto end;
}
if (!ENGINE_set_digests(e, digest_selector)) {
printf("ENGINE_set_digest failed\n");
goto end;
}
ret = 1;
end:
return ret;
}
IMPLEMENT_DYNAMIC_BIND_FN(bind)
IMPLEMENT_DYNAMIC_CHECK_FN()
可以看到OpenSSL去加载Engine的动态库时,需要动态库去调用 IMPLEMENT_DYNAMIC_BIND_FN
完成engine绑定初始化。
基本上所以教你写engine的教程到这就结束了,但是内部到底是怎么要关联上这个函数,并且触发上面的bind
函数的呢?我们先来看看这个宏的具体定义:
\# define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
OPENSSL_EXPORT \
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \
OPENSSL_EXPORT \
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
if (ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \
CRYPTO_set_mem_functions(fns->mem_fns.malloc_fn, \
fns->mem_fns.realloc_fn, \
fns->mem_fns.free_fn); \
skip_cbs: \
if (!fn(e, id)) return 0; \ /* 调用了上面例子中的bind函数 */
return 1; }
可以看到此处定义了函数bind_engine
,他会去执行用宏包裹住的函数,以完成初始化。然而你去搜索这个函数在OpenSSL中调用你一定会很失望,肯定没有你想要的结果。果然不是这么简单的,又是什么钩子挂在了什么ctx
上吧,应该也不难。
我找了不少资料,基本没发现啥靠谱的分析,没办法自己看源码吧。结果经过分析,我深刻的理解了OpenSSL的魔鬼调用,钩子的挂载可以说是很魔幻。此处源码分析基于目前的主线master,应该也是未来OpenSSL 3.0的架构了。
至于Engine是怎么设置上重置后的密码算法的,将在后续更新。
从加载Engine的main函数分析起
还是上面的例子,我们查看执行engine加载的可执行程序的源码:
int main(void)
{
// initializing OpenSSL library
OPENSSL_load_builtin_modules();
ENGINE_load_dynamic();
// building OpenSSL's configuration file path
char openssl_cnf_path[] = "./openssl.cnf";
// loading configuration
if (CONF_modules_load_file(openssl_cnf_path, "openssl_conf", 0) != 1) {
fprintf(stderr, "OpenSSL failed to load required configuration\n");
ERR_print_errors_fp(stderr);
return 1;
}
ENGINE* eng = ENGINE_by_id("engineX");
if(NULL == eng) {
printf("failed to retrieve engine by id (mppa)\n");
return 1;
}
printf("EngineX has been successfully loaded \n");
...
}
可以看到我们这个例子是从一个cnf
配置文件去加载对应的engine的,这里提一句,加载engine有几个方式,如命令行加载,手动代码加载等。这里用配置文件加载做例子是因为这个场景更加接近实际业务场景,而且流程基本涵盖全流程,值得源码去分析。接下来我们按照调用顺序来分析这样一个漫长的调用过程。
OPENSSL_load_builtin_modules
第一个函数,初始化了一个默认的conf_module
, 且名字叫做'engines'。直接看源码:
void OPENSSL_load_builtin_modules(void)
{
...
/* 我们其他的都不重要,直接看这个和Engine相关的 */
#ifndef OPENSSL_NO_ENGINE
ENGINE_add_conf_module();
#endif
...
}
void ENGINE_add_conf_module(void)
{
CONF_module_add("engines",
int_engine_module_init, int_engine_module_finish);
}
来到我们的第一个大坑,OpenSSL的动态配置文件加载,但这里我们不需要细致了解,先简单分析下:
int CONF_module_add(const char *name, conf_init_func *ifunc,
conf_finish_func *ffunc)
{
if (module_add(NULL, name, ifunc, ffunc))
return 1;
else
return 0;
}
/* 重要的结构体与全局变量 */
static STACK_OF(CONF_MODULE) *supported_modules = NULL;
static STACK_OF(CONF_IMODULE) *initialized_modules = NULL;
struct conf_module_st {
/* DSO of this module or NULL if static */
DSO *dso;
/* Name of the module */
char *name;
/* Init function */
conf_init_func *init;
/* Finish function */
conf_finish_func *finish;
/* Number of successfully initialized modules */
int links;
void *usr_data;
};
typedef struct conf_module_st CONF_MODULE;
static CONF_MODULE *module_add(DSO *dso, const char *name,
conf_init_func *ifunc, conf_finish_func *ffunc)
{
CONF_MODULE *tmod = NULL;
/* 若supported_modules为空, 则初始化此全局变量,即堆栈的初始化 */
if (supported_modules == NULL)
supported_modules = sk_CONF_MODULE_new_null();
if (supported_modules == NULL)
return NULL;
/* 申请配置文件模块结构体conf_module_st的空间 */
if ((tmod = OPENSSL_zalloc(sizeof(*tmod))) == NULL) {
CONFerr(CONF_F_MODULE_ADD, ERR_R_MALLOC_FAILURE);
return NULL;
}
/*
* 此处第一次调用,dso为NULL;
* dso = dynamic shared object, 可以理解为是一个OpenSSL去加载动态库的结构体;
*/
tmod->dso = dso;
/* 此处记住,将初始化一个叫"engines"的conf_module */
tmod->name = OPENSSL_strdup(name);
/* 配置文件init函数, 此处即int_engine_module_init。这个函数是关键 */
tmod->init = ifunc;
/* 配置文件finish函数, 此处即int_engine_module_finish */
tmod->finish = ffunc;
if (tmod->name == NULL) {
OPENSSL_free(tmod);
return NULL;
}
/* 将这个的conf_module结构体入栈进supported_modules这个全局变量栈中 */
if (!sk_CONF_MODULE_push(supported_modules, tmod)) {
OPENSSL_free(tmod->name);
OPENSSL_free(tmod);
return NULL;
}
return tmod;
}
此处有一个OpenSSL的一个知识点,OpenSSL中可以定义任意类型的安全栈,并且生成操作这个类型栈的函数族。例如有一个结构体叫XX,则可以通过DEFINE_STACK_OF(XX)
这个宏来定义XX结构体的栈和函数族,通过STACK_OF(XX)
来声明一个栈。事实上,当我们看OpenSSL源码时看到sk_
这种前缀的都是堆栈操作,而且是搜索不到实现的 (1.0.2版本应该可以找到,之后的版本都泛化了,代码写的秀,看代码的自闭)。
详见官方文档:https://www.openssl.org/docs/man1.1.0/man3/DEFINE_STACK_OF.html
此处有两个栈操作: 初始化时supported_modules
为空,所以将调用sk_CONF_MODULE_new_null
先建立上一个空容器。之后sk_CONF_MODULE_push
使上面初始化的的CONF_MODULE
入栈,之后想要取到这个module则需要通过supported_modules
这个全局栈来取。
此处多提一句,OpenSSL还有一个类似的结构体LHASH
,它是OpenSSL内部的哈希表,如果这篇文章有下我们应该会碰到它,直接理解成是一个kv_map就好。所有lh_
前缀开头的也都是哈希表操作。
ENGINE_load_dynamic
第二个函数,比较绕,简单理解就是:初始化了一个engine
, 名字叫做dynamic
,OpenSSL用这个engine来动态加载别的engine...
顺便提一句,ENGINE_load_dynamic
在1.1.x版本已经废弃了,统一都是调用OPENSSL_init_crypto
这个函数,opts = OPENSSL_INIT_ENGINE_DYNAMIC
。这又是OpenSSL非常恶心的地方了,版本兼容可以说是相当emmmmmmmm
\# define ENGINE_load_dynamic() \
OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_DYNAMIC, NULL)
int OPENSSL_init_crypto(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings)
{
...
/*
* RUN_ONCE是多线程时需要关心的,我们这里不关心,就等于调用ossl_init_engine_dynamic
* 最后一波宏展开,调用的是 engine_load_dynamic_int 这个函数
*/
if ((opts & OPENSSL_INIT_ENGINE_DYNAMIC)
&& !RUN_ONCE(&engine_dynamic, ossl_init_engine_dynamic))
return 0;
...
}
void engine_load_dynamic_int(void)
{
ENGINE *toadd = engine_dynamic(); /* 这命名真是绝了Orz */
if (!toadd)
return;
ENGINE_add(toadd);
/*
* If the "add" worked, it gets a structural reference. So either way, we
* release our just-created reference.
*/
ENGINE_free(toadd);
/*
* If the "add" didn't work, it was probably a conflict because it was
* already added (eg. someone calling ENGINE_load_blah then calling
* ENGINE_load_builtin_engines() perhaps).
*/
ERR_clear_error();
}
engine_dynamic
两个核心函数,第一个 engine_dynamic
新建了一个id
叫做'dynamic'
的engine,挂上了这个engine的具体处理函数:
static ENGINE *engine_dynamic(void)
{
/* OpenSSL申请结构体空间经常使用的xx_new */
ENGINE *ret = ENGINE_new();
if (ret == NULL)
return NULL;
if (!ENGINE_set_id(ret, engine_dynamic_id) ||
!ENGINE_set_name(ret, engine_dynamic_name) ||
!ENGINE_set_init_function(ret, dynamic_init) ||
!ENGINE_set_finish_function(ret, dynamic_finish) ||
!ENGINE_set_ctrl_function(ret, dynamic_ctrl) ||
!ENGINE_set_flags(ret, ENGINE_FLAGS_BY_ID_COPY) ||
!ENGINE_set_cmd_defns(ret, dynamic_cmd_defns)) {
ENGINE_free(ret);
return NULL;
}
return ret;
}
我们扫一眼ENGINE
结构体,首先要有一个概念,ENGINE_set_xx
就是去设置这个结构体的相应字段,所以可以记录一下这个结构体被初始化成啥样了:
struct engine_st {
const char *id;
const char *name;
const RSA_METHOD *rsa_meth;
const DSA_METHOD *dsa_meth;
const DH_METHOD *dh_meth;
const EC_KEY_METHOD *ec_meth;
const RAND_METHOD *rand_meth;
/* Cipher handling is via this callback */
ENGINE_CIPHERS_PTR ciphers;
/* Digest handling is via this callback */
ENGINE_DIGESTS_PTR digests;
/* Public key handling via this callback */
ENGINE_PKEY_METHS_PTR pkey_meths;
/* ASN1 public key handling via this callback */
ENGINE_PKEY_ASN1_METHS_PTR pkey_asn1_meths;
ENGINE_GEN_INT_FUNC_PTR destroy;
ENGINE_GEN_INT_FUNC_PTR init;
ENGINE_GEN_INT_FUNC_PTR finish;
ENGINE_CTRL_FUNC_PTR ctrl;
ENGINE_LOAD_KEY_PTR load_privkey;
ENGINE_LOAD_KEY_PTR load_pubkey;
ENGINE_SSL_CLIENT_CERT_PTR load_ssl_client_cert;
const ENGINE_CMD_DEFN *cmd_defns;
int flags;
/* reference count on the structure itself */
CRYPTO_REF_COUNT struct_ref;
/*
* reference count on usability of the engine type. NB: This controls the
* loading and initialisation of any functionality required by this
* engine, whereas the previous count is simply to cope with
* (de)allocation of this structure. Hence, running_ref <= struct_ref at
* all times.
*/
int funct_ref;
/* A place to store per-ENGINE data */
CRYPTO_EX_DATA ex_data;
/* Used to maintain the linked-list of engines. */
struct engine_st *prev;
struct engine_st *next;
}
整理如下:
static const char *engine_dynamic_id = "dynamic";
static const char *engine_dynamic_name = "Dynamic engine loading support";
static const ENGINE_CMD_DEFN dynamic_cmd_defns[] = {
{DYNAMIC_CMD_SO_PATH,
"SO_PATH",
"Specifies the path to the new ENGINE shared library",
ENGINE_CMD_FLAG_STRING},
{DYNAMIC_CMD_NO_VCHECK,
"NO_VCHECK",
"Specifies to continue even if version checking fails (boolean)",
ENGINE_CMD_FLAG_NUMERIC},
{DYNAMIC_CMD_ID,
"ID",
"Specifies an ENGINE id name for loading",
ENGINE_CMD_FLAG_STRING},
{DYNAMIC_CMD_LIST_ADD,
"LIST_ADD",
"Whether to add a loaded ENGINE to the internal list (0=no,1=yes,2=mandatory)",
ENGINE_CMD_FLAG_NUMERIC},
{DYNAMIC_CMD_DIR_LOAD,
"DIR_LOAD",
"Specifies whether to load from 'DIR_ADD' directories (0=no,1=yes,2=mandatory)",
ENGINE_CMD_FLAG_NUMERIC},
{DYNAMIC_CMD_DIR_ADD,
"DIR_ADD",
"Adds a directory from which ENGINEs can be loaded",
ENGINE_CMD_FLAG_STRING},
{DYNAMIC_CMD_LOAD,
"LOAD",
"Load up the ENGINE specified by other settings",
ENGINE_CMD_FLAG_NO_INPUT},
{0, NULL, NULL, 0}
}; /* 加载动态engine时的命令 */
# define ENGINE_FLAGS_BY_ID_COPY (int)0x0004
ENGINE dynamic = {.id = engine_dynamic_id,
.name = engine_dynamic_name,
.init = dynamic_init, /* 空函数,直接return 0 */
.finish = dynamic_finish, /* 空函数,直接return 0 */
.ctrl = dynamic_ctrl, /* 最重要的函数,后文将分析如何调用到这来 */
.flags = ENGINE_FLAGS_BY_ID_COPY,
.cmd_defns = dynamic_cmd_defns /*定义了dynamic这个engine ctrl下的合法cmd*/
.prev = NULL, .next = NULL /* 说明engine都是以双向链表形式管理 */
};
完成初始化后,将返回上这个new出来的ENGINE结构体。随后丢到ENGINE_add
里。
ENGINE_add
上面结构体分析其实已经可以看到,所有的engine都将以双向链表形式管理,链表建立简单粗暴,直接定义全局变量一头一尾,添加时就往尾巴加,搜索就从头结点开始搜索:
static ENGINE *engine_list_head = NULL;
static ENGINE *engine_list_tail = NULL;
/* Add another "ENGINE" type into the list. */
int ENGINE_add(ENGINE *e)
{
int to_return = 1;
/* 一些入参检查,omit */
...
/* 全局变量操作时需要加锁以支持多线程 */
CRYPTO_THREAD_write_lock(global_engine_lock);
/* 核心函数,将刚刚new出来的dynamic加入全局链表中 */
if (!engine_list_add(e)) {
ENGINEerr(ENGINE_F_ENGINE_ADD, ENGINE_R_INTERNAL_LIST_ERROR);
to_return = 0;
}
CRYPTO_THREAD_unlock(global_engine_lock);
return to_return;
}
static int engine_list_add(ENGINE *e)
{
int conflict = 0;
ENGINE *iterator = NULL;
if (e == NULL) {
ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
/* 从链表头开始迭代 */
iterator = engine_list_head;
/* 直接遍历到尾部查看有没有重id的情况,重id直接报错退出 */
while (iterator && !conflict) {
conflict = (strcmp(iterator->id, e->id) == 0);
iterator = iterator->next;
}
if (conflict) {
ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ENGINE_R_CONFLICTING_ENGINE_ID);
return 0;
}
if (engine_list_head == NULL) {
/* We are adding to an empty list. */
if (engine_list_tail) {
ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ENGINE_R_INTERNAL_LIST_ERROR);
return 0;
}
/* engine_list为空的话则链表头为新建的engine */
engine_list_head = e;
e->prev = NULL;
/*
* The first time the list allocates, we should register the cleanup.
*/
engine_cleanup_add_last(engine_list_cleanup);
} else {
/* We are adding to the tail of an existing list. */
if ((engine_list_tail == NULL) || (engine_list_tail->next != NULL)) {
ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ENGINE_R_INTERNAL_LIST_ERROR);
return 0;
}
/* 将新engine加到队尾的后面 */
engine_list_tail->next = e;
e->prev = engine_list_tail;
}
/*
* Having the engine in the list assumes a structural reference.
*/
e->struct_ref++;
engine_ref_debug(e, 0, 1);
/* 将队尾指向新engine */
engine_list_tail = e;
e->next = NULL;
return 1;
}
这样,id
为'dynamic'
被加入了全局engine
列表当中,被管理起来。
CONF
我们这里对OpenSSL的动态配置conf
不需要细致分析,随着代码分析即可。官方文档其实对conf
格式讲解的很清楚,可以学习:
https://www.openssl.org/docs/man1.1.1/man5/config.html
Engine Configuration Module这个小节
例子中conf文件
首先我们来看engineX
例子中的conf
是怎么写的:
openssl_conf = openssl_def
[openssl_def]
engines = engine_section
[engine_section]
engine_x = engine_x_section
[engine_x_section]
engine_id = engineX
dynamic_path = ${ENV::PWD}/build/engine_ex.so
default_algorithms = ALL
init = 1
简单学习一下conf
之后,我们之后这个配置文件核心的section
就是engine_section
,其中dynamic_path
定义上了该engine共享库的路径。我们看看例子中是如何根据这个配置文件去加载对应的engine的
CONF_modules_load_file
...
char openssl_cnf_path[] = "./openssl.cnf";
// loading configuration
if (CONF_modules_load_file(openssl_cnf_path, "openssl_conf", 0) != 1) {
...
}
...
CONF_modules_load_file
是去加载配置并使能配置的接口,这里我们主要关心如何去根据配置文件去加载动态库,具体怎么完成配置文件解析的流程这里不讨论。
int CONF_modules_load_file(const char *filename,
const char *appname, unsigned long flags)
{
return CONF_modules_load_file_with_libctx(NULL, filename, appname, flags);
}
int CONF_modules_load_file_with_libctx(OPENSSL_CTX *libctx,
const char *filename,
const char *appname, unsigned long flags)
{
char *file = NULL;
CONF *conf = NULL;
int ret = 0;
conf = NCONF_new_with_libctx(libctx, NULL);
if (conf == NULL)
goto err;
if (filename == NULL) {
file = CONF_get1_default_config_file();
if (file == NULL)
goto err;
} else {
file = (char *)filename;
}
if (NCONF_load(conf, file, NULL) <= 0) {
if ((flags & CONF_MFLAGS_IGNORE_MISSING_FILE) &&
(ERR_GET_REASON(ERR_peek_last_error()) == CONF_R_NO_SUCH_FILE)) {
ERR_clear_error();
ret = 1;
}
goto err;
}
ret = CONF_modules_load(conf, appname, flags);
err:
if (filename == NULL)
OPENSSL_free(file);
NCONF_free(conf);
if (flags & CONF_MFLAGS_IGNORE_RETURN_CODES)
return 1;
return ret;
}
可以看到这里主要有三步操作NCONF_new_with_libctx
、NCONF_load
、CONF_modules_load
,我们一个一个分析。
NCONF_new_with_libctx
这个函数主要是初始化上了一个CONF
结构体,同时将这个结构体的METHOD
定义成了默认方法。
/* 配置文件的method模板 */
struct conf_method_st {
const char *name;
CONF *(*create) (CONF_METHOD *meth);
int (*init) (CONF *conf);
int (*destroy) (CONF *conf);
int (*destroy_data) (CONF *conf);
int (*load_bio) (CONF *conf, BIO *bp, long *eline);
int (*dump) (const CONF *conf, BIO *bp);
int (*is_number) (const CONF *conf, char c);
int (*to_int) (const CONF *conf, char c);
int (*load) (CONF *conf, const char *name, long *eline);
};
/*
* 所有的 AA = BB 都会按照这个格式保存
* 如[openssl_def] engines = engine_section
* 此时这个底下conf_st的哈希表中将保存上一份
* {.section = "openssl_def", .name = "engines", value = "engine_section"}
*/
typedef struct {
char *section;
char *name;
char *value;
} CONF_VALUE;
struct conf_st {
CONF_METHOD *meth; /* 动态配置的方法,这里使用default */
void *meth_data;
LHASH_OF(CONF_VALUE) *data; /* 上文有提到的哈希表 */
unsigned int flag_dollarid:1;
OPENSSL_CTX *libctx;
};
/*
* The following section contains the "New CONF" functions. They are
* completely centralised around a new CONF structure that may contain
* basically anything, but at least a method pointer and a table of data.
* These functions are also written in terms of the bridge functions used by
* the "CONF classic" functions, for consistency.
*/
CONF *NCONF_new_with_libctx(OPENSSL_CTX *libctx, CONF_METHOD *meth)
{
CONF *ret;
if (meth == NULL)
meth = NCONF_default();
ret = meth->create(meth);
if (ret == NULL) {
CONFerr(0, ERR_R_MALLOC_FAILURE);
return NULL;
}
/* 这个流程中是NULL,不需要分析 */
ret->libctx = libctx;
return ret;
}
我们先看NCONF_default
:
/* 标记上这些方法,相关定义后续会给出,且将会使用 */
static CONF_METHOD default_method = {
"OpenSSL default",
def_create,
def_init_default,
def_destroy,
def_destroy_data,
def_load_bio,
def_dump,
def_is_number,
def_to_int,
def_load
};
CONF_METHOD *NCONF_default(void)
{
return &default_method;
}
第一个在default_method
被使用的方法就是def_create
, 很明显是去申请一块CONF
结构体内存,之后调用def_init_default
去初始化结构体 :
static CONF *def_create(CONF_METHOD *meth)
{
CONF *ret;
ret = OPENSSL_malloc(sizeof(*ret));
if (ret != NULL)
/* 这里调用`def_init_default` */
if (meth->init(ret) == 0) {
OPENSSL_free(ret);
ret = NULL;
}
return ret;
}
static int def_init_default(CONF *conf)
{
if (conf == NULL)
return 0;
memset(conf, 0, sizeof(*conf));
/* 将新申请的CONF结构体的method字段设置为默认method */
conf->meth = &default_method;
/* meth_data的设置,这个是.conf文件字符解析时候使用的,我们这里不讲 */
conf->meth_data = (void *)CONF_type_default;
return 1;
}
NCONF_load
初始化好CONF
结构体,确定好对应配置文件名,开始对配置文件进行解析,NCONF_load
(OpenSSL连配置文件格式都自己定义自己解析,硬核硬核)将调用到默认方法之 def_load
int NCONF_load(CONF *conf, const char *file, long *eline)
{
if (conf == NULL) {
CONFerr(CONF_F_NCONF_LOAD, CONF_R_NO_CONF);
return 0;
}
return conf->meth->load(conf, file, eline);
}
static int def_load(CONF *conf, const char *name, long *line)
{
int ret;
BIO *in = NULL;
/* 这里通过BIO读入文件(Binary IO, openssl自己定义的io,简单理解就是一块内存Orz) */
#ifdef OPENSSL_SYS_VMS
in = BIO_new_file(name, "r");
#else
in = BIO_new_file(name, "rb");
#endif
...
/* 正式解析,按段解析;
* 这里不分析咋解析的,很复杂很长,甚至能处理一些环境变量$(xxx)... 服
* 最后结果都存在哈希表data中
*/
ret = def_load_bio(conf, in, line);
BIO_free(in);
return ret;
}
CONF_modules_load
核心过程,从CONF
去加载第一部分提到的'engines'
这个module:
int CONF_modules_load(const CONF *cnf, const char *appname,
unsigned long flags)
{
STACK_OF(CONF_VALUE) *values;
CONF_VALUE *vl;
char *vsection = NULL;
int ret, i;
if (!cnf)
return 1;
/* 先获取到对应的section名,这里就是"openssl_conf" */
if (appname)
vsection = NCONF_get_string(cnf, NULL, appname);
if (!appname || (!vsection && (flags & CONF_MFLAGS_DEFAULT_SECTION)))
vsection = NCONF_get_string(cnf, NULL, "openssl_conf");
if (!vsection) {
ERR_clear_error();
return 1;
}
OSSL_TRACE1(CONF, "Configuration in section %s\n", vsection);
/*
* 找到第一个段 openssl_conf
* [openssl_def]
* engines = engine_section
*/
values = NCONF_get_section(cnf, vsection);
if (!values)
return 0;
for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
vl = sk_CONF_VALUE_value(values, i);
/* 遍历所有的value,这里只有一个 'engines' */
ret = module_run(cnf, vl->name, vl->value, flags);
OSSL_TRACE3(CONF, "Running module %s (%s) returned %d\n",
vl->name, vl->value, ret);
if (ret <= 0)
if (!(flags & CONF_MFLAGS_IGNORE_ERRORS))
return ret;
}
return 1;
}
static int module_run(const CONF *cnf, const char *name, const char *value,
unsigned long flags)
{
CONF_MODULE *md;
int ret;
if (!RUN_ONCE(&load_builtin_modules, do_load_builtin_modules))
return -1;
/* 这里会在supported_modules这个栈上找到'engines'这个CONF_MODULE,开始魔幻表演 */
md = module_find(name);
...
/* init这个module,这里将去调用到'dynamic'这个engine,下面将分析 */
ret = module_init(md, name, value, cnf);
...
return ret;
}
/* initialize a module */
/* 此处将申请上一个所谓的initialized module,
* 之后调用'engines'的init函数
* 若成功,将'engines' push进的全局变量栈 initialized_modules */
static int module_init(CONF_MODULE *pmod, const char *name, const char *value,
const CONF *cnf)
{
int ret = 1;
int init_called = 0;
CONF_IMODULE *imod = NULL;
/* Otherwise add initialized module to list */
imod = OPENSSL_malloc(sizeof(*imod));
if (imod == NULL)
goto err;
imod->pmod = pmod;
imod->name = OPENSSL_strdup(name); /* 即'engines' */
imod->value = OPENSSL_strdup(value);
imod->usr_data = NULL;
if (!imod->name || !imod->value)
goto memerr;
/* Try to initialize module */
if (pmod->init) {
/* 调用engines的init,即第一部分提到的int_engine_module_init函数 */
ret = pmod->init(imod, cnf);
init_called = 1;
/* Error occurred, exit */
if (ret <= 0)
goto err;
}
if (initialized_modules == NULL) {
initialized_modules = sk_CONF_IMODULE_new_null();
if (!initialized_modules) {
CONFerr(CONF_F_MODULE_INIT, ERR_R_MALLOC_FAILURE);
goto err;
}
}
/* 将'engines' push进的全局变量栈 initialized_modules */
if (!sk_CONF_IMODULE_push(initialized_modules, imod)) {
CONFerr(CONF_F_MODULE_INIT, ERR_R_MALLOC_FAILURE);
goto err;
}
pmod->links++;
return ret;
err:
...
}
CONF
的第一部分处理完毕,开始查看如何继续解析这个配置
int_engine_module_init
这部分开始取engines
这个section下的数据:
static int int_engine_module_init(CONF_IMODULE *md, const CONF *cnf)
{
STACK_OF(CONF_VALUE) *elist;
CONF_VALUE *cval;
int i;
OSSL_TRACE2(CONF, "Called engine module: name %s, value %s\n",
CONF_imodule_get_name(md), CONF_imodule_get_value(md));
/* Value is a section containing ENGINEs to configure */
elist = NCONF_get_section(cnf, CONF_imodule_get_value(md));
/*
* 获取engine_section下的列表,这里就一个section叫做engine_x_section
* [engine_section]
* engine_x = engine_x_section
*/
if (!elist) {
ENGINEerr(ENGINE_F_INT_ENGINE_MODULE_INIT,
ENGINE_R_ENGINES_SECTION_ERROR);
return 0;
}
for (i = 0; i < sk_CONF_VALUE_num(elist); i++) {
cval = sk_CONF_VALUE_value(elist, i);
/*
* name: engine_x, value: engine_x_section
* 准备开始加载了
*/
if (!int_engine_configure(cval->name, cval->value, cnf))
return 0;
}
return 1;
}
int_engine_configure
是加载engine的主要流程,我们按顺序来一步一步分析内部的循环
int_engine_configure
- 首先加载上value的section:
static int int_engine_configure(const char *name, const char *value, const CONF *cnf)
{
int i;
int ret = 0;
long do_init = -1;
STACK_OF(CONF_VALUE) *ecmds;
CONF_VALUE *ecmd = NULL;
const char *ctrlname, *ctrlvalue;
ENGINE *e = NULL;
int soft = 0;
name = skip_dot(name);
OSSL_TRACE1(CONF, "Configuring engine %s\n", name);
/* Value is a section containing ENGINE commands */
/* 在conf的哈希表中找 叫做engine_x_section的section */
ecmds = NCONF_get_section(cnf, value);
/*
* 此时ecmds是一个栈,按顺序有以下CONF_VALUE (共有section = "engine_x_section")
* {.name = "engine_id", .value = "engineX"}
* {.name = "dynamic_path", .value = "${ENV::PWD}/build/engine_ex.so"(这里已经通配符解析 * 了)}
* {.name = "default_algorithms", .value = "ALL"}
* {.name = "init", .value = "1"}
*/
if (!ecmds) {
ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE,
ENGINE_R_ENGINE_SECTION_ERROR);
return 0;
}
...
}
-
按照顺序解析:
第一个是engine_id:
static int int_engine_configure(const char *name, const char *value, const CONF *cnf) { ... /* 开始对ecmds中栈上的CONF_VALUE遍历,这部分代码都在这个for循环中 */ for (i = 0; i < sk_CONF_VALUE_num(ecmds); i++) { ecmd = sk_CONF_VALUE_value(ecmds, i); /* 解析出ctrlname和ctrlvalue,对应结构体中.name和.value, 下同 */ ctrlname = skip_dot(ecmd->name); ctrlvalue = ecmd->value; OSSL_TRACE2(CONF, "ENGINE: doing ctrl(%s,%s)\n", ctrlname, ctrlvalue); /* First handle some special pseudo ctrls */ /* Override engine name to use */ if (strcmp(ctrlname, "engine_id") == 0) /* 把name制成conf文件中engine_id */ name = ctrlvalue; ... } ... }
第二个是
dynamic_path
, 这个定义最关键,找到这个name,开始按照指定路径加载动态库engine:for(...) { ... else if (strcmp(ctrlname, "dynamic_path") == 0) { /* * 看到这里是不是豁然开朗,首先找到第二部分初始化的叫做dynamic的engine * 但这个地方有个值得注意的点,底下分析ENGINE_by_id */ e = ENGINE_by_id("dynamic"); /* 拿到'dynamic'这个ENGINE结构体后,进行三步操作,完成了engineX这个so的加载 */ /* 之后我们将单独把ENGINE_ctrl_cmd_string拿出来分析,观察它是如何去加载的*/ if (!e) goto err; if (!ENGINE_ctrl_cmd_string(e, "SO_PATH", ctrlvalue, 0)) goto err; if (!ENGINE_ctrl_cmd_string(e, "LIST_ADD", "2", 0)) goto err; if (!ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) goto err; ... } /* * 完成这三步操作后,'dynamic'副本这个engine已经被重写成了 'engineX'! * 同时这个engineX也加入了engines的队列中。 */ ENGINE *ENGINE_by_id(const char *id) { /* 入参检查和环境初始化检查 omit */ ... /* 加锁后开始遍历链表,匹配id = "dynamic" */ CRYPTO_THREAD_write_lock(global_engine_lock); iterator = engine_list_head; while (iterator && (strcmp(id, iterator->id) != 0)) iterator = iterator->next; if (iterator != NULL) { /* * We need to return a structural reference. If this is an ENGINE * type that returns copies, make a duplicate - otherwise increment * the existing ENGINE's reference count. */ /* 匹配成功后的小操作:看ENGINE_load_dynamic源码可以看到 dynamic->flag 被设置成了 ENGINE_FLAGS_BY_ID_COPY */ if (iterator->flags & ENGINE_FLAGS_BY_ID_COPY) { ENGINE *cp = ENGINE_new(); if (cp == NULL) iterator = NULL; else { /* 此处很重要! */ /* 此处取出的dynamic,不是直接取出链表中的engine节点,而是复制了一个节点 */ engine_cpy(cp, iterator); iterator = cp; } } else { iterator->struct_ref++; engine_ref_debug(iterator, 0, 1); } } CRYPTO_THREAD_unlock(global_engine_lock); if (iterator != NULL) /* 作为取出返回值,得到了一个dynamic的副本 */ return iterator; }
注意,此时e
这个局部变量已经是一个id
为'engineX'
的ENGINE结构体了,也就是完成了动态加载的engine!
第三步是default_algorithms
:
for (...) {
else if (strcmp(ctrlname, "default_algorithms") == 0) {
if (!ENGINE_set_default_string(e, ctrlvalue))
...
}
第四步,完成Init
:
for (...) {
if (strcmp(ctrlname, "init") == 0) {
if (!NCONF_get_number_e(cnf, value, "init", &do_init))
goto err;
if (do_init == 1) {
/*
* 此处为1,完成engine init,
* 具体代码就是调用ENGINE_init去执行e->init, 增加引用数之类的,我们这里其实是空的
* 之后去把这个engine同时加入initialized_engines这个全局变量栈中。代码不看了
*/
if (!int_engine_init(e))
goto err;
...
}
就此CONF_modules_load
全部运行完成,engineX
加载完毕。后续只需要像main
函数中的使用ENGINE_by_id("engineX");
就可以取得这个engine了。圆满。
但是 bind_engine
在哪调用的呢,还是没看到,那必然是在ENGINE_ctrl_cmd_string
流程中。所以下面重点讲讲这个函数。
ENGINE_ctrl_cmd_string
从cmd_name去获取cmd_num
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
int cmd_optional)
{
int num, flags;
long l;
char *ptr;
...
/* 宏的命名已经暴露了一切,通过cmd_name得到cmd_num */
if (e->ctrl == NULL
|| (num = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FROM_NAME,
0, (void *)cmd_name, NULL)) <= 0) {
...
}
...
}
int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
...
/*
* Intercept any "root-level" commands before trying to hand them on to
* ctrl() handlers.
*/
switch (cmd) {
/* 这部分是通用的ctrl,范围为10 ~ 18, 全部进入int_ctrl_helper */
case ENGINE_CTRL_HAS_CTRL_FUNCTION:
return ctrl_exists;
case ENGINE_CTRL_GET_FIRST_CMD_TYPE:
case ENGINE_CTRL_GET_NEXT_CMD_TYPE:
case ENGINE_CTRL_GET_CMD_FROM_NAME:
case ENGINE_CTRL_GET_NAME_LEN_FROM_CMD:
case ENGINE_CTRL_GET_NAME_FROM_CMD:
case ENGINE_CTRL_GET_DESC_LEN_FROM_CMD:
case ENGINE_CTRL_GET_DESC_FROM_CMD:
case ENGINE_CTRL_GET_CMD_FLAGS:
/*
* 这里dynamic的flag为ENGINE_FLAGS_BY_ID_COPY,0x0004
* ENGINE_FLAGS_MANUAL_CMD_CTRL = 0x0002,与的结果为0
*/
if (ctrl_exists && !(e->flags & ENGINE_FLAGS_MANUAL_CMD_CTRL))
return int_ctrl_helper(e, cmd, i, p, f);
if (!ctrl_exists) {
ENGINEerr(ENGINE_F_ENGINE_CTRL, ENGINE_R_NO_CONTROL_FUNCTION);
/*
* For these cmd-related functions, failure is indicated by a -1
* return value (because 0 is used as a valid return in some
* places).
*/
return -1;
}
default:
break;
}
/* Anything else requires a ctrl() handler to exist. */
/* 这里是确定当前engine->ctrl != NULL */
if (!ctrl_exists) {
ENGINEerr(ENGINE_F_ENGINE_CTRL, ENGINE_R_NO_CONTROL_FUNCTION);
return 0;
}
/* 调用上面看到的 dynamic->ctrl = dynamic_ctrl, 后面会调用到这来 */
return e->ctrl(e, cmd, i, p, f);
}
/* 这个函数也将反复调用(吐槽下openssl这鬼之设计),我们这里先看当前的cmd */
static int int_ctrl_helper(ENGINE *e, int cmd, long i, void *p,
void (*f) (void))
{
int idx;
char *s = (char *)p;
const ENGINE_CMD_DEFN *cdp;
...
/* Now handle cmd_name -> cmd_num conversion */
if (cmd == ENGINE_CTRL_GET_CMD_FROM_NAME) {
/* 从dynamic的cmd_defns中去匹配cmd_name,假设是"SO_PATH",
直接去查第二部分的dynamic_cmd_defns,刚好匹配上idx = 0 */
if ((e->cmd_defns == NULL)
|| ((idx = int_ctrl_cmd_by_name(e->cmd_defns, s)) < 0)) {
ENGINEerr(ENGINE_F_INT_CTRL_HELPER, ENGINE_R_INVALID_CMD_NAME);
return -1;
}
/* 查idx = 0时的 cmd_num = 200 = DYNAMIC_CMD_SO_PATH */
return e->cmd_defns[idx].cmd_num;
}
...
}
可以看到这里的num
返回回来的DYNAMIC_CMD_SO_PATH
,是靠dynamic.cmd_defns
中的ENGINE_CMD_DEFN
数组表查询得到的。往下接着看ENGINE_ctrl_cmd_string
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
int cmd_optional)
{
/* 继续调用公用ctrl,进入到int_ctrl_helper
(看底下开源的注释,两个函数做的ctrl操作一样的,为啥这么搞也许就是未解之谜吧) */
...
if (!ENGINE_cmd_is_executable(e, num)) {
ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
ENGINE_R_CMD_NOT_EXECUTABLE);
return 0;
}
/* 顾名思义,拿到dynamic的flag,这里将得到idx = 0时,cmd_defns表中0处的第四个元素 */
flags = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FLAGS, num, NULL, NULL);
if (flags < 0) {
/*
* Shouldn't happen, given that ENGINE_cmd_is_executable() returned
* success.
*/
ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
ENGINE_R_INTERNAL_LIST_ERROR);
return 0;
}
}
static int int_ctrl_helper(ENGINE *e, int cmd, long i, void *p,
void (*f) (void))
{
...
if ((e->cmd_defns == NULL)
|| ((idx = int_ctrl_cmd_by_num(e->cmd_defns, (unsigned int)i)) < 0)) {
ENGINEerr(ENGINE_F_INT_CTRL_HELPER, ENGINE_R_INVALID_CMD_NUMBER);
return -1;
}
/* Now the logic splits depending on command type */
cdp = &e->cmd_defns[idx];
switch (cmd) {
...
case ENGINE_CTRL_GET_CMD_FLAGS:
/* 可以查出来上面的是 ENGINE_CMD_FLAG_STRING = 0x0002 */
return cdp->cmd_flags;
}
...
}
别问为啥不一次查出来,要多次遍历,问就是架构。继续看ENGINE_ctrl_cmd_string
,终于要做真正的操作了, 可以看到,最后进入了dynamic_ctrl
:
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
int cmd_optional)
{
...
/* ENGINE_CMD_FLAG_NO_INPUT = 0x0004 */
if (flags & ENGINE_CMD_FLAG_NO_INPUT) {
/* 如果命令查出来的flag应该没有arg_input, 但arg非空,直接退出???? */
if (arg != NULL) {
ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
ENGINE_R_COMMAND_TAKES_NO_INPUT);
return 0;
}
/*
* We deliberately force the result of ENGINE_ctrl() to 0 or 1 rather
* than returning it as "return data". This is to ensure usage of
* these commands is consistent across applications and that certain
* applications don't understand it one way, and others another.
*/
/* 最后"LOAD"命令走的这 */
if (ENGINE_ctrl(e, num, 0, (void *)arg, NULL) > 0)
return 1;
return 0;
}
/* So, we require input */
if (arg == NULL) {
ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
ENGINE_R_COMMAND_TAKES_INPUT);
return 0;
}
/* 一定有更好的写法吧,这种判断也太迷惑了。。 */
/* If it takes string input, that's easy */
if (flags & ENGINE_CMD_FLAG_STRING) {
/* Same explanation as above */
/* 所以应该调用到这,注意此时num 将大于200, 肯定不是默认的流程,
这就走到了return e->ctrl(e, cmd, i, p, f); 即 dynamic_ctrl */
if (ENGINE_ctrl(e, num, 0, (void *)arg, NULL) > 0)
return 1;
return 0;
}
/* 此时arg是数字,需要从str转int,LIST_ADD走这 */
if (!(flags & ENGINE_CMD_FLAG_NUMERIC)) {
ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
ENGINE_R_INTERNAL_LIST_ERROR);
return 0;
}
l = strtol(arg, &ptr, 10);
if ((arg == ptr) || (*ptr != '\0')) {
ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER);
return 0;
}
/*
* Force the result of the control command to 0 or 1, for the reasons
* mentioned before.
*/
if (ENGINE_ctrl(e, num, l, NULL, NULL) > 0)
return 1;
...
}
所以这个函数的主要步骤就是根据输入的cmd_name
从dynamic
中挂载的cmd_defns
取出对应的cmd_num
和flag
,之后用cmd_num
调用到dynamic
挂载的ctrl
字段函数去做真正的操作。我们用一张表统计下三次取到的结果:
cmd_name | cmd_num | flag |
---|---|---|
"SO_PATH" | DYNAMIC_CMD_SO_PATH = 200 | ENGINE_CMD_FLAG_STRING 0x0002 |
"LIST_ADD" | DYNAMIC_CMD_LIST_ADD = 203 | ENGINE_CMD_FLAG_NUMERIC 0x0001 |
"LOAD" | DYNAMIC_CMD_LOAD = 206 | ENGINE_CMD_FLAG_NO_INPUT 0x0004 |
根据这个表,我们去看对于dynamic->ctrl
即dynamic_ctrl
函数对这几个cmd
的操作
dynamic_ctrl
先看这个函数的公共部分,对相同的engine会初始化上一个ctx
上下文:
/* 动态库加载的上下文 */
struct st_dynamic_data_ctx {
/* The DSO object we load that supplies the ENGINE code */
DSO *dynamic_dso;
/*
* The function pointer to the version checking shared library function
*/
dynamic_v_check_fn v_check;
/*
* The function pointer to the engine-binding shared library function
*/
dynamic_bind_engine bind_engine;
/* The default name/path for loading the shared library */
char *DYNAMIC_LIBNAME;
/* Whether to continue loading on a version check failure */
int no_vcheck;
/* If non-NULL, stipulates the 'id' of the ENGINE to be loaded */
char *engine_id;
/*
* If non-zero, a successfully loaded ENGINE should be added to the
* internal ENGINE list. If 2, the add must succeed or the entire load
* should fail.
*/
int list_add_value;
/* The symbol name for the version checking function */
const char *DYNAMIC_F1;
/* The symbol name for the "initialise ENGINE structure" function */
const char *DYNAMIC_F2;
/*
* Whether to never use 'dirs', use 'dirs' as a fallback, or only use
* 'dirs' for loading. Default is to use 'dirs' as a fallback.
*/
int dir_load;
/* A stack of directories from which ENGINEs could be loaded */
STACK_OF(OPENSSL_STRING) *dirs;
};
static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
/* 这个函数将会初始化并保存动态库数据的ctx,这也是为什么可以反复调用这个接口的原因 */
dynamic_data_ctx *ctx = dynamic_get_data_ctx(e);
int initialised;
if (!ctx) {
ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_NOT_LOADED);
return 0;
}
/* 可以看到,加载完成的标志是dynamic_dso钩子已经挂上了 */
initialised = ((ctx->dynamic_dso == NULL) ? 0 : 1);
/* All our control commands require the ENGINE to be uninitialised */
if (initialised) {
ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_ALREADY_LOADED);
return 0;
}
/* cmd解析,底下逐个分析 */
...
}
/*
* This function retrieves the context structure from an ENGINE's "ex_data",
* or if it doesn't exist yet, sets it up.
*/
static dynamic_data_ctx *dynamic_get_data_ctx(ENGINE *e)
{
dynamic_data_ctx *ctx;
if (dynamic_ex_data_idx < 0) {
/*
* Create and register the ENGINE ex_data, and associate our "free"
* function with it to ensure any allocated contexts get freed when
* an ENGINE goes underground.
*/
int new_idx = ENGINE_get_ex_new_index(0, NULL, NULL, NULL,
dynamic_data_ctx_free_func);
if (new_idx == -1) {
ENGINEerr(ENGINE_F_DYNAMIC_GET_DATA_CTX, ENGINE_R_NO_INDEX);
return NULL;
}
CRYPTO_THREAD_write_lock(global_engine_lock);
/* Avoid a race by checking again inside this lock */
if (dynamic_ex_data_idx < 0) {
/* Good, someone didn't beat us to it */
dynamic_ex_data_idx = new_idx;
new_idx = -1;
}
CRYPTO_THREAD_unlock(global_engine_lock);
/*
* In theory we could "give back" the index here if (new_idx>-1), but
* it's not possible and wouldn't gain us much if it were.
*/
}
ctx = (dynamic_data_ctx *)ENGINE_get_ex_data(e, dynamic_ex_data_idx);
/* Check if the context needs to be created */
if ((ctx == NULL) && !dynamic_set_data_ctx(e, &ctx))
/* "set_data" will set errors if necessary */
return NULL;
return ctx;
}
/*
* 简单的说就是去查挂在engine->ex_data,
* 这个就是动态库加载的上下文,ex_data是个栈可能有多个上下文,
* 根据一个全局变量dynamic_ex_data_idx确定当前使用上下文
* 当然第一次调用ctx是空的,所以需要调用一下dynamic_set_data_ctx初始化
*/
static int dynamic_set_data_ctx(ENGINE *e, dynamic_data_ctx **ctx)
{
/* 申请ctx的mem */
dynamic_data_ctx *c = OPENSSL_zalloc(sizeof(*c));
int ret = 1;
if (c == NULL) {
ENGINEerr(ENGINE_F_DYNAMIC_SET_DATA_CTX, ERR_R_MALLOC_FAILURE);
return 0;
}
c->dirs = sk_OPENSSL_STRING_new_null();
if (c->dirs == NULL) {
ENGINEerr(ENGINE_F_DYNAMIC_SET_DATA_CTX, ERR_R_MALLOC_FAILURE);
OPENSSL_free(c);
return 0;
}
/* 初始化一些字段,下面总结 */
c->DYNAMIC_F1 = "v_check", ;
c->DYNAMIC_F2 = "bind_engine";
c->dir_load = 1;
CRYPTO_THREAD_write_lock(global_engine_lock);
/* 第一次进来为NULL(然而正常是为ctx = NULL才会调用这个函数,可能是冗余校验)*/
if ((*ctx = (dynamic_data_ctx *)ENGINE_get_ex_data(e,
dynamic_ex_data_idx))
== NULL) {
/* Good, we're the first */
/* 把ctx挂在engine->ex_data上 */
ret = ENGINE_set_ex_data(e, dynamic_ex_data_idx, c);
if (ret) {
*ctx = c;
c = NULL;
}
}
CRYPTO_THREAD_unlock(global_engine_lock);
/*
* If we lost the race to set the context, c is non-NULL and *ctx is the
* context of the thread that won.
*/
if (c)
sk_OPENSSL_STRING_free(c->dirs);
OPENSSL_free(c);
return ret;
}
/*
* 得到最后的结果 dynamic->ex_data = ctx;
* ctx = {.DYNAMIC_F1 = "v_check", .DYNAMIC_F2 = "bind_engine", c->dir_load = 1}
* 惊奇的发现了 bind_engine 虽然他只是个字符串,但是我相信你已经知道原因了
* 他需要在动态库中去寻找这个符号
*/
之后我们逐一分析这三个cmd
DYNAMIC_CMD_SO_PATH和DYNAMIC_CMD_LIST_ADD
static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
...
switch (cmd) {
/* 注意, p就是ctrlvalue,即从conf中取下来的值 */
case DYNAMIC_CMD_SO_PATH:
/* a NULL 'p' or a string of zero-length is the same thing */
if (p && (strlen((const char *)p) < 1))
p = NULL;
OPENSSL_free(ctx->DYNAMIC_LIBNAME);
if (p)
/* 很明显只是做了个简单的复制,此时路径已经赋值上了 */
ctx->DYNAMIC_LIBNAME = OPENSSL_strdup(p);
else
ctx->DYNAMIC_LIBNAME = NULL;
return (ctx->DYNAMIC_LIBNAME ? 1 : 0);
case DYNAMIC_CMD_LIST_ADD:
if ((i < 0) || (i > 2)) {
ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_INVALID_ARGUMENT);
return 0;
}
/* 很简单,赋值而已 */
ctx->list_add_value = (int)i;
return 1;
...
}
}
这两个都很简单,最后难点都给了LOAD
DYNAMIC_CMD_LOAD
最关键的函数,完成了全部的加载,解释都在注释里:
static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
...
switch (cmd) {
case DYNAMIC_CMD_LOAD:
return dynamic_load(e, ctx);
...
}
}
static int dynamic_load(ENGINE *e, dynamic_data_ctx *ctx)
{
ENGINE cpy;
dynamic_fns fns;
/*
* 先new一个DSO结构体,DSO这一套函数怎么玩的这里先不讲了,
* 可以理解为内部也有一个加载钩子,有4个挂载点,估计再展开讲读者疯了
*/
if (ctx->dynamic_dso == NULL)
ctx->dynamic_dso = DSO_new();
if (ctx->dynamic_dso == NULL)
return 0;
/* 此处检查DYNAMIC_LIBNAME不能为空,这个就是dso的加载地址 */
if (!ctx->DYNAMIC_LIBNAME) {
if (!ctx->engine_id)
return 0;
DSO_ctrl(ctx->dynamic_dso, DSO_CTRL_SET_FLAGS,
DSO_FLAG_NAME_TRANSLATION_EXT_ONLY, NULL);
ctx->DYNAMIC_LIBNAME =
DSO_convert_filename(ctx->dynamic_dso, ctx->engine_id);
}
/* 核心加载函数int_load,看下面分析 */
if (!int_load(ctx)) {
ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_DSO_NOT_FOUND);
DSO_free(ctx->dynamic_dso);
ctx->dynamic_dso = NULL;
return 0;
}
/* We have to find a bind function otherwise it'll always end badly */
/*
* 此时engine动态库已经加载如内存,符号表与对应地址也准备完成
* 所以肯定是需要去寻找这个绑定engine完成加载的函数了,胜利的曙光
* DSO_bind_func会在符号表中去匹配第二个参数字符串,这里就是我们要的"bind_engine"
* 并返回上它的函数地址,挂载在ctx->bind_engine上
*/
if (!
(ctx->bind_engine =
(dynamic_bind_engine) DSO_bind_func(ctx->dynamic_dso,
ctx->DYNAMIC_F2))) {
ctx->bind_engine = NULL;
DSO_free(ctx->dynamic_dso);
ctx->dynamic_dso = NULL;
ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_DSO_FAILURE);
return 0;
}
/* Do we perform version checking? */
if (!ctx->no_vcheck) {
unsigned long vcheck_res = 0;
/*
* Now we try to find a version checking function and decide how to
* cope with failure if/when it fails.
*/
ctx->v_check =
(dynamic_v_check_fn) DSO_bind_func(ctx->dynamic_dso,
ctx->DYNAMIC_F1);
if (ctx->v_check)
vcheck_res = ctx->v_check(OSSL_DYNAMIC_VERSION);
/*
* We fail if the version checker veto'd the load *or* if it is
* deferring to us (by returning its version) and we think it is too
* old.
*/
if (vcheck_res < OSSL_DYNAMIC_OLDEST) {
/* Fail */
ctx->bind_engine = NULL;
ctx->v_check = NULL;
DSO_free(ctx->dynamic_dso);
ctx->dynamic_dso = NULL;
ENGINEerr(ENGINE_F_DYNAMIC_LOAD,
ENGINE_R_VERSION_INCOMPATIBILITY);
return 0;
}
}
/*
* First binary copy the ENGINE structure so that we can roll back if the
* hand-over fails
*/
memcpy(&cpy, e, sizeof(ENGINE));
/*
* Provide the ERR, "ex_data", memory, and locking callbacks so the
* loaded library uses our state rather than its own. FIXME: As noted in
* engine.h, much of this would be simplified if each area of code
* provided its own "summary" structure of all related callbacks. It
* would also increase opaqueness.
*/
fns.static_state = ENGINE_get_static_state();
CRYPTO_get_mem_functions(&fns.mem_fns.malloc_fn, &fns.mem_fns.realloc_fn,
&fns.mem_fns.free_fn);
/*
* Now that we've loaded the dynamic engine, make sure no "dynamic"
* ENGINE elements will show through.
*/
engine_set_all_null(e);
/* Try to bind the ENGINE onto our own ENGINE structure */
/* !!!!Attension, 终于调用成功了,我们的engineX终于被设置好了! */
if (!ctx->bind_engine(e, ctx->engine_id, &fns)) {
ctx->bind_engine = NULL;
ctx->v_check = NULL;
DSO_free(ctx->dynamic_dso);
ctx->dynamic_dso = NULL;
ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_INIT_FAILED);
/* Copy the original ENGINE structure back */
memcpy(e, &cpy, sizeof(ENGINE));
return 0;
}
/* Do we try to add this ENGINE to the internal list too? */
/* 把这个engine的副本add进上面engine全局链表,大功告成!*/
if (ctx->list_add_value > 0) {
if (!ENGINE_add(e)) {
/* Do we tolerate this or fail? */
if (ctx->list_add_value > 1) {
/*
* Fail - NB: By this time, it's too late to rollback, and
* trying to do so allows the bind_engine() code to have
* created leaks. We just have to fail where we are, after
* the ENGINE has changed.
*/
ENGINEerr(ENGINE_F_DYNAMIC_LOAD,
ENGINE_R_CONFLICTING_ENGINE_ID);
return 0;
}
/* Tolerate */
ERR_clear_error();
}
}
return 1;
}
static int int_load(dynamic_data_ctx *ctx)
{
int num, loop;
/* Unless told not to, try a direct load */
/*
* DSO_load去打开ctx->DYNAMIC_LIBNAME,把egine对应的lib库加载进内存
* 解析符号表和对应地址到上面申请好的ctx->dynamic_dso结构体中
*/
if ((ctx->dir_load != 2) && (DSO_load(ctx->dynamic_dso,
ctx->DYNAMIC_LIBNAME, NULL,
0)) != NULL)
return 1;
/* If we're not allowed to use 'dirs' or we have none, fail */
if (!ctx->dir_load || (num = sk_OPENSSL_STRING_num(ctx->dirs)) < 1)
return 0;
for (loop = 0; loop < num; loop++) {
/* 还有链接的dso这里会处理递归的去加载,对应的需要在ctx->dirs中 */
const char *s = sk_OPENSSL_STRING_value(ctx->dirs, loop);
char *merge = DSO_merge(ctx->dynamic_dso, ctx->DYNAMIC_LIBNAME, s);
if (!merge)
return 0;
if (DSO_load(ctx->dynamic_dso, merge, NULL, 0)) {
/* Found what we're looking for */
OPENSSL_free(merge);
return 1;
}
OPENSSL_free(merge);
}
return 0;
}
终于终于终于,找到目标了,这个叫做'dynamic'
的engine副本完成了变成engineX
的蜕变。
后续
难怪这么多人喷OpenSSL烂,这复杂的流程,这一个又一个的钩子。不过这一串源码读下来看明白的时候还是有神清气爽的感觉。
有缘后面会分析密码算法具体挂载,如ENGINE_set_digests
。
我很菜,有错误的地方欢迎指正