10X单细胞(10X空间转录组)空间相关性分析和cellphoneDB与NicheNet联合进行细胞通讯分析

hello,大家好,随着10X单细胞、10X空间转录组如火如荼的进行中,我们的分析内容和手段也要进入深水区了,很多深入和细节的分析需要我们格外注意了,今天我们来分享两个非常好的点,希望大家能够深入分析自己的数据,发大文章。

首先第一点,Spatial Correlation Analysis,其实这个谈过好几次了,文章在10X空间转录组之共定位分析(细胞类型和配受体基因)10X空间转录组之基因的空间表达模式10X空间转录组(10X单细胞)之论细胞通讯空间分布的重要性等。这一次我们在文章Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma分享一些很经典和值得注意的方法,大家一定要重点关注。

We reasoned that genes expressed in adjacent spots in ST were potentially meaningful and that a simple correlation of genes across spots could overlook this adjacency structure within the data(在ST的相邻斑点中表达的基因具有潜在的意义,并且各个斑点之间的基因简单相关可能会忽略数据中的这种邻接结构,这个地方已经多次强调过,希望引起大家的重视 ). Thus, we calculated average normalized gene expression(均一化的数据) across a ‘‘sliding window’’ of spot groups consisting of a central spot surrounding by its N nearest neighbors(临近spot), where N = 4 in the original ST data and N = 6 in Visium samples for each spot in the tissue, generating a matrix of genes by average spot group expression across all spots(重点关注,临近spot平均之后产生新的矩阵). This matrix can be correlated with any ‘‘anchoring’’ gene of interest (FOXP3 in our case) by calculating pairwise Pearson correlations of the FOXP3 expression vector across all spots and the gene average group expression vectors across spots(这个地方体现其准备的价值). These values reflect if the expression of a gene in the area surrounding the anchoring gene is correlated with the expression of the anchoring gene and termed ‘‘spatial gene correlation’’ with FOXP3 .(空间基因的相关性)。

关于空间基因的相关性分析,多次的强调过,因为组织有一个有序的“实体”,组织上的细胞类型,基因表达的分布都有其深刻的生物学意义,一定要重点关注。

第二个分析点,cellphoneDB与NicheNet联合进行细胞通讯分析,这个方法相当经典

Ligand-receptor interactions were inferred using a similar approach as previously described (Vento-Tormo et al., 2018)(这个地方就是cellphoneDB的分析结果). We first calculated average expression of ligand and receptor pairs across cell type pairs in normalized scRNA-seq data from an aggregate of the seven patient tumor samples containing TSK cells(老套路). We only considered genes with more than 10% of cells demonstrating expression within each cell type considered. We calculated a null distribution for average ligand-receptor by shuffling cell identities in the aggregated data and re-calculating ligand-receptor average pair expression across 1,000 permutations of randomized cell identities. The P value was the number of randomized pairs exceeding the observed data. For bar plots shown in Figures 6B and 6C, in addition to including only ligand-receptor pairs with p < 0.001, we further thresholded individual ligand or receptor expression with a cutoff of average expression > 0.2 (in log space). The 0.2 cutoff was determined by calculating the average log gene expression distribution for all genes across each cell type, and genes expressed at or above this cutoff corresponded with the top 12% or higher of expressed genes for each cell type.(这个地方就是cellphoneDB的一般流程)。

For NicheNet analysis, we derived TME cell type signatures by taking the top 100 differentially expressed genes in cells isolated from tumors or normal skin, including B cells, endothelial cells, fibroblasts, Langerhans cells, plasmacytoid DCs, CD1C DCs, CLEC9A DCs, T cells, NK cells, macrophages, and MDSCs(熟悉这个软件的同学应该不陌生,需要输入靶基因列表,但是这个靶基因的选择很有讲究,不是简单的cluster之间的差异。)。 We input these signatures into NicheNet to derive a union set of predicted ligands modulating tumor-specific TME cell type signatures(依据靶基因预测配体). For ligands predicting TSK modulation, we input the top 100 TSK-differentially expressed genes . The top 15% of predicted ligands (配体的挑选)by regulatory potential that also demonstrated significance in our scRNA-seq ligand-receptor interaction analysis .we used the FindAllMarkers function in Seurat to generate average logFC values per cell type compared to other cell types from the scRNAseq data.(千万注意)。

For ligand-receptor spatial transcriptomic proximity analysis, the average value of all ligand-receptor pairs across the leading edge from the eight sections from patients 2, 4, and 10 were calculated first by averaging the ligand and receptor expression among each leading edge spot and its 4-6 nearest neighbors (depending on ST technology), and then taking the average values of all of these groups of five or seven spots across the leading edge. This calculation for each ligand-receptor pair was then performed on 1,000 randomized permutations of spot identities while preserving total number of spots per replicate section to generate a null distribution per patient. P value was calculated by number of randomized permutation calculations that exceeded the true average.(边界分析)。

简单总结一下,cellphoneDB分析配受体,依据感兴趣的靶基因,通过NicheNet分析,挑选高活性的配体,然后再从cellphoneDB里面匹配显著的配受体对,从而达到分析目的,说起来很简单,但真正的操作,很需要智慧和能力。

生活很好,等你超越

©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容