非线性Granger因果关系发现的可解释稀疏神经网络模型

An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality Discovery翻译
个人学习笔记,转载参考请注明出处

摘要

虽然大多数经典的格兰杰因果关系检测方法依赖于线性时间序列假设,但神经科学和经济学应用中的许多交互作用是非线性的。我们发展了一种使用多层感知器的非线性格兰杰因果关系检测方法,其中网络的输入是所有序列的过去时间滞后,输出是单个序列的未来值。在这种情况下,Granger非因果关系的一个充分条件是,输入数据的所有输出权重(序列的过去滞后)到第一个隐藏层都为零。对于估计,我们使用一组套索惩罚将输入权重组缩小为零。我们还提出了一个等级惩罚同时格兰杰因果关系和滞后估计。我们在稀疏线性自回归模型和稀疏非线性Lorenz-96模型的模拟数据上验证了我们的方法。

介绍

格兰杰因果关系量化了一个时间序列的过去活动对另一个时间序列的预测程度。当研究一个完整的时间序列系统时,相互作用网络可能会被发现[2]。经典上,估计格兰杰因果关系的大多数方法假设线性时间序列动力学,并使用流行的向量自回归(VAR)模型[9,8]。然而,在许多现实世界的时间序列中,序列之间的依赖是非线性的,使用线性模型可能导致格兰杰因果相互作用的不一致估计[12,13]。估计时间序列中相互作用的常见非线性方法使用加法模型[12,4,11],其中每个序列的过去可能有一个相加的非线性效应,在序列之间解耦。然而,加性模型可能会忽略预测因子之间重要的非线性相互作用,因此也可能无法检测到重要的Granger因果关系。

为了解决这些挑战,我们提出了一个框架,以解释非线性格兰杰因果关系发现使用正则化神经网络。用于时间序列分析的神经网络模型传统上只用于预测和预测,而不用于解释。这是因为,由于隐藏层中相互作用的节点错综复杂,输入的影响难以精确量化。我们避开了这个困难,而是构建了一个简单的体系结构,允许我们精确地选择对输出没有线性或非线性影响的时间序列。

我们将最近关于神经网络体系结构选择稀疏诱导惩罚的研究[1,7]应用到我们的案例中。特别是,我们通过在输入的输出权重上添加一组套索惩罚[14]来选择格兰杰因果关系,我们称之为编码选择。我们还探讨了一种自动滞后选择的分层套索惩罚[10]。当真实的非线性相互作用网络是稀疏的时,该方法将选取Granger引起的输出序列和这些相互作用的滞后的几个时间序列

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343