梯度下降

我的理解:
求优化命题的解
梯度:是高维空间的各个方向的变量导数
导数:一维时的梯度
下降:一般为求最小值用到

梯度下降.PNG

导数对应方向:
(<0):对应X轴负方向损失增大,故属性应该往反方向运动。
(>0): 对应X轴正方向损失增大,故属性应该往反方向运动。
下降速度(学习率):可以自己设置,但容易影响,导致出现损失函数值更大的情况。

问题2:

也有可能出现搜索到局部最小值,不是全局最小值。
解决方法:随机化起点 ,可能找到。

要搞线性可分的

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容