Eager Execution

介绍 Eager Execution 模式下的梯度计算,废话不多说,直接上图

1,gradients_function

gradients_function
def square(x):
    return x ** 2
print(square(3.))

grad = tfe.gradients_function(square)  
print(grad(3.))

grad = tfe.value_and_gradients_function(square)
print(grad(3.))

def f(x, y):
    return x ** 2 + y ** 2
print(f(2., 3.))

grad = tfe.gradients_function(f)  
print(grad(2., 3.))

grad = tfe.value_and_gradients_function(f)
print(grad(2., 3.))

2,implicit_function

implicit_function
x = tfe.Variable(initial_value = 2.0, name = 'x')
y = tfe.Variable(initial_value = 3.0, name = 'y')
print(x.numpy())

def loss(y):
    return (y - x ** 2) ** 2
print(loss(7).numpy())

grad = tfe.implicit_gradients(loss)
print(grad(7.))

grad = tfe.implicit_value_and_gradients(loss)
print(grad(7.))

x = tfe.Variable(initial_value = 2.0, name = 'x')
y = tfe.Variable(initial_value = 3.0, name = 'y')
z = tfe.Variable(initial_value = 3.0, name = 'z')
print(x)

def loss(y):
    return (y - x ** 2 + z ** 2) ** 2
print(loss(7).numpy())

grad = tfe.implicit_gradients(loss)
print(grad(7.))

grad = tfe.implicit_value_and_gradients(loss)
print(grad(7.))

在看一个用 Eager Execution写的回归时,看到看到求导函数里面嵌套一个函数,所以有一个示例如下

3.PNG
w = tfe.Variable(initial_value = 3.0, name = 'w')
b = tfe.Variable(initial_value = 3.0, name = 'b')

def aa(x):
    return w * x + b

def bb(model, x, y):
    return tf.pow(model(x) - y, 2)

grad = tfe.implicit_gradients(bb)
print(grad(aa, 2, 2))

grad = tfe.implicit_value_and_gradients(bb)
print(grad(aa, 2, 2))
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容