Android 单例模式的正确姿势

单例模式是使用得最多的设计模式,模版代码也很多。但是如果使用不当还是容易出问题。

DCL模式(双重检查锁定模式)的正确使用方式

一般我们使用DCL方法来实现单例模式时都是这样的模版代码:

private static Singleton mSingleton = null;
private Singleton () {}

public static Singleton getInstance() {
    if (mSingleton == null) {
        synchronized (Singleton.class) {
            if (mSingleton == null) {
                mSingleton = new Singleton();
            }
        }
    }
    return mSingleton;

}

实际上,上述方法在多线程的环境下,还是会有可能创建多个实例。为什么呢?

mSingleton = new Singleton()这行代码虚拟机在执行的时候会有多个操作,大致包括:

  • 为新的对象分配内存
  • 调用Singleton的构造方法,初始化成员变量
  • 将mSingleton这个引用指向新创建的Singleton对象的地址

在多线程环境下,每个线程的私有内存空间中都有mSingleton的副本。这导致可能存在下面的情况:

  • 当在一个线程中初始化mSingleton后,主内存中的mSingleton变量的值可能并没有及时更新;
  • 主内存的mSingleton变量已经更新了,但在另一个线程中的mSingleton变量没有即时从主内存中读取最新的值

这样的话就有可能创建多个实例,虽然这种几率比较小。

那怎么解决这个问题呢?答案是使用volatile关键字

volatile关键字能够保证可见性,被volatile修饰的变量,在一个线程中被改变时会立刻同步到主内存中,而另一个线程在操作这个变量时都会先从主内存更新这个变量的值。

更保险的单例模式实现

private volatile static Singleton mSingleton = null;
private Singleton () {}

public static Singleton getInstance() {
    if (mSingleton == null) {
        synchronized (Singleton.class) {
            if (mSingleton == null) {
                mSingleton = new Singleton();
            }
        }
    }
    return mSingleton;

}

使用单例模式,小心内存泄漏了喔~

单例模式的静态特性导致它的对象的生命周期是和应用一样的,如果不注意这一点就可能导致内存泄漏。下面看看常见的2种情况

  • Context的泄漏
//SingleInstance.class
private volatile static SingleInstance mSingleInstance = null;
private SingleInstance (Context context) {}

public static SingleInstance getInstance(Context context) {
    if (mSingleInstance == null) {
        synchronized (SingleInstance.class) {
            if (mSingleInstance == null) {
                mSingleInstance = new SingleInstance(context);
            }
        }
    }
    return mSingleInstance;

}

//MyActivity
public class MyActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        
        //这样就容易出问题了
        SingleInstance singleInstance = SingleInstance.getInstance(this);
    }

    @Override
    protected void onDestroy() {
        super.onDestroy();
    }
}

如上面那样直接传入MyActivity的引用,如果当前MyActivity退出了,但应用还没有退出,singleInstance一直持有MyActivity的引用,MyActivity就不能被回收了。

解决方法也很简单,传入ApplicationContext就可以了。

SingleInstance singleInstance = SingleInstance.getInstance(getApplicationContext());
  • View的泄漏

如果单例模式的类中有跟View相关的属性,就需要注意了。搞不好也会导致内存泄漏,原因和上面分析的原因一样。

//SingleInstance.class
private volatile static SingleInstance mSingleInstance = null;
private SingleInstance (Context context) {}

public static SingleInstance getInstance(Context context) {
    if (mSingleInstance == null) {
        synchronized (SingleInstance.class) {
            if (mSingleInstance == null) {
                mSingleInstance = new SingleInstance(context);
            }
        }
    }
    return mSingleInstance;

}

//单例模式中这样持有View的引用会导致内存泄漏
private View myView = null;
public void setMyView(View myView) {
    this.myView = myView;
}

解决方案是采用弱引用

private volatile static SingleInstance mSingleInstance = null;
private SingleInstance (Context context) {}

public static SingleInstance getInstance(Context context) {
    if (mSingleInstance == null) {
        synchronized (SingleInstance.class) {
            if (mSingleInstance == null) {
                mSingleInstance = new SingleInstance(context);
            }
        }
    }
    return mSingleInstance;

}

//    private View myView = null;
//    public void setMyView(View myView) {
//        this.myView = myView;
//    }

//用弱引用
private WeakReference<View> myView = null;
public void setMyView(View myView) {
    this.myView = new WeakReference<View>(myView);
}

很多东西虽然简单,还是有我们需要注意的地方。这就需要我们理解它们的特性了。比如上面用了弱引用来解决内存泄漏的问题,那我们就需要明白弱引用的特点,需要注意使用弱引用的变量可能为空的问题

被弱引用关联的对象只能生存到下一次垃圾收集发生之前,当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象


             今天你进步了嘛?欢迎关注我的微信公众号,和我一起每天进步一点点!
AntDream
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容