740. 删除与获得点数(Python)

难度:★★★☆☆
类型:数组
方法:动态规划

力扣链接请移步本题传送门
更多力扣中等题的解决方案请移步力扣中等题目录

给定一个整数数组 nums ,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除每个等于 nums[i] - 1 或 nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入: nums = [3, 4, 2]
输出: 6
解释:
删除 4 来获得 4 个点数,因此 3 也被删除。
之后,删除 2 来获得 2 个点数。总共获得 6 个点数。

示例 2:

输入: nums = [2, 2, 3, 3, 3, 4]
输出: 9
解释:
删除 3 来获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。
注意:

nums的长度最大为20000。
每个整数nums[i]的大小都在[1, 10000]范围内。

解答

这个题是穿了马夹的《打家劫舍》问题。为什么这么讲,当取了一个数字,相邻数字都不可以取,不是和打家劫舍问题中打劫了一家,相邻家户不可以打劫是一样的道理吗。

认识了这实际上是一道打家劫舍问题,问题就在于,怎么样把这种数值的关系,转换成像打家劫舍一样位置的关系。我们采取的策略是,建立数值对下标的映射。例如数组[1,1,1,1,3,3]中,有4个1和2个3,我们希望建立的数组是按照数值-位置映射后的每个元素的和,即[1+1+1+1, 0, 3+3]。

因此,我们可以通过统计每个元素出现的次数,建立每家每户的财富列表treasure(可能是包含很多零的数组),剩下的就可以使用打家劫舍的动态规划来做了。这里回顾一下动态规划的过程:

【定义数组】数组rob长度为treasure的长度,rob[i]表示打劫到下标为i的家户时可以获得的最大收益。

【初始化】先填充好第一个和第二个位置,第二个位置取前两个家户财产的最大值;

【递归】由于不能打劫相邻的家户,因此研究第i个家户时,有两种方案,即打劫这一家或者不打劫这一家,选取其中较大值即可。
rob[i] = max(treasure[i] + rob[i-2], rob[i-1])

【返回值】返回打劫到最后一家的最大收益rob[-1]即可。

class Solution:
    def deleteAndEarn(self, nums) -> int:
        if not nums:
            return 0

        count = collections.Counter(nums)
        if len(count) == 1:
            return sum(nums)

        # 创造每家每户的财产列表
        treasure = [0 for _ in range(max(count.keys()))]
        for k, v in count.items():
            treasure[k-1] = k * v

        # 动态规划解决打家劫舍问题
        rob = [0 for _ in range(len(treasure))]
        rob[0], rob[1] = treasure[0], max(treasure[0], treasure[1])
        for i in range(2, len(treasure)):
            rob[i] = max(rob[i-1], treasure[i] + rob[i-2])
        return rob[-1]

如有疑问或建议,欢迎评论区留言~

有关更多力扣中等题的python解决方案,请移步力扣中等题解析

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容