垃圾收集器组合
JDK7/8后,HotSpot虚拟机所有收集器及组合(连线),如下图:
图中展示了7种不同分代的收集器:
Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1;而它们所处区域,则表明其是属于新生代收集器还是老年代收集器:
新生代收集器:Serial、ParNew、Parallel Scavenge;
老年代收集器:Serial Old、Parallel Old、CMS;
整堆收集器:G1;两个收集器间有连线,表明它们可以搭配使用
其中Serial Old作为CMS出现"Concurrent Mode Failure"失败的后备预案
G1收集器
G1(Garbage-First)是JDK7-u4才推出商用的收集器;
1、特点
(1)并行与并发
能充分利用多CPU、多核环境下的硬件优势;
可以并行来缩短"Stop The World"停顿时间;
也可以并发让垃圾收集与用户程序同时进行;
(2)分代收集,收集范围包括新生代和老年代
能独立管理整个GC堆(新生代和老年代),而不需要与其他收集器搭配;
能够采用不同方式处理不同时期的对象;
虽然保留分代概念,但Java堆的内存布局有很大差别:将整个堆划分为多个大小相等的独立区域(Region),新生代和老年代不再是物理隔离,它们都是一部分Region(不需要连续)的集合;
(3)结合多种垃圾收集算法,空间整合,不产生碎片
从整体看,是基于标记-整理算法;
从局部(两个Region间)看,是基于复制算法;
基本不会产生内存碎片,有利于长时间运行;
(4)可预测的停顿:低停顿的同时实现高吞吐量
G1除了追求低停顿处,还能建立可预测的停顿时间模型;
可以明确指定M毫秒时间片内,垃圾收集消耗的时间不超过N毫秒;
2、应用场景
面向服务端应用,针对具有大内存、多处理器的机器;
最主要的应用是为需要低GC延迟,并具有大堆的应用程序提供解决方案;
如:在堆大小约6GB或更大时,可预测的暂停时间可以低于0.5秒;
3、设置参数
"-XX:+UseG1GC":指定使用G1收集器;
"-XX:InitiatingHeapOccupancyPercent":当整个Java堆的占用率达到参数值时,开始并发标记阶段;默认为45;
"-XX:MaxGCPauseMillis":为G1设置暂停时间目标,默认值为200毫秒;
"-XX:G1HeapRegionSize":设置每个Region大小,范围1MB到32MB;目标是在最小Java堆时可以拥有约2048个Region;
4、为什么G1收集器可以实现可预测的停顿
可以有计划地避免在Java堆的进行全区域的垃圾收集;
G1跟踪各个Region获得其收集价值大小,在后台维护一个优先列表;
每次根据允许的收集时间,优先回收价值最大的Region(名称Garbage-First的由来);
这就保证了在有限的时间内可以获取尽可能高的收集效率;
5、G1收集器运作过程
(A)、初始标记(Initial Marking)
仅标记一下GC Roots能直接关联到的对象;
且修改TAMS(Next Top at Mark Start),让下一阶段并发运行时,用户程序能在正确可用的Region中创建新对象;
需要"Stop The World",但速度很快;
(B)、并发标记(Concurrent Marking)
进行GC Roots Tracing的过程;
刚才产生的集合中标记出存活对象;
耗时较长,但应用程序也在运行;
并不能保证可以标记出所有的存活对象;
(C)、最终标记(Final Marking)
为了修正并发标记期间因用户程序继续运作而导致标记变动的那一部分对象的标记记录;
上一阶段对象的变化记录在线程的Remembered Set Log;
这里把Remembered Set Log合并到Remembered Set中;
需要"Stop The World",且停顿时间比初始标记稍长,但远比并发标记短;
采用多线程并行执行来提升效率;
(D)、筛选回收(Live Data Counting and Evacuation)
首先排序各个Region的回收价值和成本;
然后根据用户期望的GC停顿时间来制定回收计划;
最后按计划回收一些价值高的Region中垃圾对象;
回收时采用"复制"算法,从一个或多个Region复制存活对象到堆上的另一个空的Region,并且在此过程中压缩和释放内存;
可以并发进行,降低停顿时间,并增加吞吐量;