/* Copyright (C) 1991-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Torbjorn Granlund (tege@sics.se),
with help from Dan Sahlin (dan@sics.se);
commentary by Jim Blandy (jimb@ai.mit.edu).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <string.h>
#include <stdlib.h>
#undef strlen
#ifndef STRLEN
# define STRLEN strlen
#endif
/* Return the length of the null-terminated string STR. Scan for
the null terminator quickly by testing four bytes at a time. */
size_t
STRLEN (const char *str)
{
const char *char_ptr;
const unsigned long int *longword_ptr;
unsigned long int longword, himagic, lomagic;
/* Handle the first few characters by reading one character at a time.
Do this until CHAR_PTR is aligned on a longword boundary. */
for (char_ptr = str; ((unsigned long int) char_ptr
& (sizeof (longword) - 1)) != 0;
++char_ptr)
if (*char_ptr == '\0')
return char_ptr - str;
/* All these elucidatory comments refer to 4-byte longwords,
but the theory applies equally well to 8-byte longwords. */
longword_ptr = (unsigned long int *) char_ptr;
/* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
the "holes." Note that there is a hole just to the left of
each byte, with an extra at the end:
bits: 01111110 11111110 11111110 11111111
bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
The 1-bits make sure that carries propagate to the next 0-bit.
The 0-bits provide holes for carries to fall into. */
himagic = 0x80808080L;
lomagic = 0x01010101L;
if (sizeof (longword) > 4)
{
/* 64-bit version of the magic. */
/* Do the shift in two steps to avoid a warning if long has 32 bits. */
himagic = ((himagic << 16) << 16) | himagic;
lomagic = ((lomagic << 16) << 16) | lomagic;
}
if (sizeof (longword) > 8)
abort ();
/* Instead of the traditional loop which tests each character,
we will test a longword at a time. The tricky part is testing
if *any of the four* bytes in the longword in question are zero. */
for (;;)
{
longword = *longword_ptr++;
if (((longword - lomagic) & ~longword & himagic) != 0)
{
/* Which of the bytes was the zero? If none of them were, it was
a misfire; continue the search. */
const char *cp = (const char *) (longword_ptr - 1);
if (cp[0] == 0)
return cp - str;
if (cp[1] == 0)
return cp - str + 1;
if (cp[2] == 0)
return cp - str + 2;
if (cp[3] == 0)
return cp - str + 3;
if (sizeof (longword) > 4)
{
if (cp[4] == 0)
return cp - str + 4;
if (cp[5] == 0)
return cp - str + 5;
if (cp[6] == 0)
return cp - str + 6;
if (cp[7] == 0)
return cp - str + 7;
}
}
}
}
libc_hidden_builtin_def (strlen)
上面是glibc-2.25的strlen函数的的源代码,我这里呢精简一下,因为我用的平台是64位的,所以我就省略了32位的一些判断,顺便加了一些注释,方便理解
unsigned long long strlen (const char *str){
for (const char *char_ptr = str; (unsigned long long) char_ptr & 7; ++char_ptr)
if (*char_ptr == 0)
return char_ptr - str;
/*
这里可能有人不懂,char_ptr & 7这是在做什么
解释一下,这里考虑的一个对齐的,这个循环最多只能执行7次
分别是001,010,011,100,101,110,111,
即char_tr的低三位为如上值时
*/
for (const unsigned long long *longword_ptr = (unsigned long long*) str;;++longword_ptr){
unsigned long long longword = *longword_ptr;
if ((longword - 0X0101010101010101) & ~longword & 0X8080808080808080){
for (unsigned long long i = 0; i < 8; ++i) {
const char *cp = (const char *)longword_ptr;
if(cp[i] == 0)
return cp - str + i;
}
/*
上面也有一个难点:就是那个条件
上面的是64位的8字的,我用8字的char 讲一下
char c;
~c & 0X80
这个的结果只有两种
一种是0X80,当且仅当~C的最高为1时就是C的最高位为0时成立
一种是0
(c-1)& 0X80的结果也只有两种
一种是0X80,当且仅当(c-1)的最高为1时成立
一种是0
要使结果是非0,即0X80,只要同时满足两种条件
(c-1)& 0X80 & (~c & 0X80)!= 0 即(c-1)& ~c & 0X80同时成立
即c的最高位是0,而且(c-1)的最高位是1,当且仅当c等于0时成立
*/
}
}
}
有人喜欢的话,给点个赞