梯度裁剪、正向传播、反向传播、搭建一个简单的神经网络

1 梯度裁剪

原因: 循环神经⽹络中较容易出现梯度衰减梯度爆炸,裁剪的目的就是将梯度限制在一个范围内,避免参数被抛出很远或远离极小值的情况。
公式: 所有模型参数梯度的元素拼接成⼀个向量 g,并设裁剪的阈值是 θ,所以模型的 L2 范数不会超过 θ。

梯度裁剪公式

实现代码

def grad_clipping(params, theta, ctx):
    norm = nd.array([0], ctx)
    for param in params:
        norm += (param.grad ** 2).sum()
    norm = norm.sqrt().asscalar()
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

2 正向传播

所谓的正向传播就是从输入层开始依次求每个参数的值。简单说就是将值带入模型,依次往下算,把值计算出来。

3 反向传播

反向传播依据微积分中的链式法则,沿着从输出层到输⼊层的顺序,依次计算并存储⽬标函数有关神经⽹络各层的中间变量以及参数梯度
简单说定义一个损失函数,然后对其中的变量求偏微分即可,然后一边求一边存入数据。

最简单的深度学习模型就只有一层——输出层

单层神经网络(来源于《动手学深度学习》)

4 单层神经网络线性模型的训练过程

  • 1 获取数据集
  • 2 定义模型
    y = w * x + b
  • 3 初始化模型参数
  • 4 定义损失函数
    损失函数:是一个计算过程,求模型预测输出的值与真实值的偏差
    常见的有平⽅损失(square loss)l(w, b) = \frac{1}{2}(\hat{y}^{(i)}-y^{(i)})^2, \hat{y}^{(i)}是将训练数据 x 带入模型中得到的结果。
  • 5 定义优化算法
    优化算法:目的就是为了降低损失值,得到一个解析解,即让最终的 wb 使得模型更准确,让模型的预测值更接近真实值。 优化算法里面就有 learning ratew =w - \frac{ \eta}{batchsize} * \frac{\partial{l(w, b)}}{\partial{w}},每次往梯度下降方向走learning rate这么多步,使得最终[w, b]为模型损失值最小值的最优解。当然这个最优大部分情况下不是最优,只是局部最优,想要结果更好,learning rate的设置都是至关重要的一步,初始值[w_0, b_0]的设置是可以随机设置的
    如:小批量随机梯度下降(mini-batch stochastic gradient descent)
  • 6 训练模型
    即是让反复使用优化函数降低 loss, 最终得到精度更高的 wb
  • 7 模型预测

5 参考资料

1.《动手学深度学习》视频文档
2.复旦大学邱锡鹏教授的书《神经网络与深度学习》开源书籍(查看其中的公式理论)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容