JWT-token—前后端分离架构的api安全问题

前后端分离架构带来的好处一搜一大堆,我们来看一下分离后后端接口的安全问题。
前后端分离架构现状:

前端:vue项目,Nginx部署
后端:node.js和java项目

这样的情况后端api是暴露在外网中,因为常规的web项目无论如何前端都是要通过公网访问到后台api的,带来的隐患也有很多。
1.接口公开,谁都可以访问
2.数据请求的参数在传输过程被篡改
3.接口被重复调用
...

session和cookie局限性

session和cookie都是客户端与服务端通讯需要提供的认证,当客户端的值和服务器的值吻合时,才允许请求api,解决了第1个问题,但是当攻击者获取到了传输过程中的session或者cookie值后,就可以进行第2、3种攻击了

JWT的token机制

JWT标准的token包含三部分:

1.header(头部),头部信息主要包括(参数的类型--JWT,签名的算法--HS256)
2.poyload(负荷),负荷基本就是自己想要存放的信息(因为信息会暴露,不应该在载荷里面加入任何敏感的数据),有两个形式,下边会讲到
3.sign(签名),签名的作用就是为了防止恶意篡改数据

头部(Header)

头部用于描述关于该JWT的最基本的信息,例如其类型以及签名所用的算法等

{
  "typ": "JWT",
  "alg": "HS256"
}

将上面的JSON对象进行[base64编码]可以得到下面的字符串。这个字符串我们将它称作JWT的Header

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
载荷(Payload)

Payload也是一个JSON对象。包含了一些其他的信息

{
 "iss": "John Wu JWT",
 "iat": 1441593502,
 "exp": 1441594722,
 "aud": "www.example.com",
 "sub": "jrocket@example.com",
 "from_user": "B",
 "target_user": "A"
}

这里面的前五个字段都是由JWT的标准所定义的。

*   `iss`: 该JWT的签发者
*   `sub`: 该JWT所面向的用户
*   `aud`: 接收该JWT的一方
*   `exp`(expires): 什么时候过期,这里是一个Unix时间戳
*   `iat`(issued at): 在什么时候签发的

将上面的JSON对象进行[base64编码]可以得到下面的字符串。这个字符串我们将它称作JWT的Payload

eyJmcm9tX3VzZXIiOiJCIiwidGFyZ2V0X3VzZXIiOiJBIn0

注意:Base64是一种编码,也就是说,它是可以被翻译回原来的样子来的。它并不是一种加密过程。

签名(Sign)

将上面的两个编码后的字符串都用句号.连接在一起(头部在前),就形成了

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJmcm9tX3VzZXIiOiJCIiwidGFyZ2V0X3VzZXIiOiJBIn0

最后,我们将上面拼接完的字符串用HS256算法进行加密。在加密的时候,我们还需要提供一个密钥(secret)。如果我们用mystar作为密钥的话,那么就可以得到我们加密后的内容

rSWamyAYwuHCo7IFAgd1oRpSP7nzL7BF5t7ItqpKViM

这一部分叫做签名

image

最后将这一部分签名也拼接在被签名的字符串后面,我们就得到了完整的JWT

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJmcm9tX3VzZXIiOiJCIiwidGFyZ2V0X3VzZXIiOiJBIn0.rSWamyAYwuHCo7IFAgd1oRpSP7nzL7BF5t7ItqpKViM

为什么要使用签名

签名解决了数据传输过程中参数被篡改的风险
一般而言,加密算法对于不同的输入产生的输出总是不一样的,如果有人对Header以及Payload的内容解码之后进行修改,再进行编码的话,那么新的头部和载荷的签名和之前的签名就将是不一样的。而且,如果不知道服务器加密的时候用的密钥的话,得出来的签名也一定会是不一样的。

sig2.png

服务器应用在接受到JWT后,会首先对头部和载荷的内容用同一算法再次签名。如果服务器应用对头部和载荷再次以同样方法签名之后发现,自己计算出来的签名和接受到的签名不一样,那么就说明这个Token的内容被别人动过的,我们应该拒绝这个Token

如何防范Replay Attacks

解决了篡改数据的问题,还有第3个问题,那就是攻击者不修改数据,只是重复攻击

所谓重复攻击就是攻击者发送一个后端服务器已接收过的包,来达到攻击系统的目的。

比如在浏览器端通过用户名/密码验证获得签名的Token被木马窃取。即使用户登出了系统,黑客还是可以利用窃取的Token模拟正常请求,而服务器端对此完全不知道,因为JWT机制是无状态的。

可以在Payload里增加时间戳并且前后端都参与来解决:

1.前端生成token时,在payload里增加当前时间戳
2.后端接收后,对解析出来的时间戳和当前时间进行判断,
3.如果相差特定时间内(比如2秒),允许请求否则判定为重复攻击

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容