从零开始学Python可视化(六): 双轴图

在工作中,我们经常会遇到需要同时展示两种指标的需求。如果想要简单地实现这样的需求,我们完全可以将两个指标在两张图中展示。

然而我们常常需要将两个极为相关或者同样重要的指标放在一起来观察,比如说,有一家内容类公司,需要观察过去一年产品日活以及内容整体点击率的趋势,他们既不想日活增长点击率降低,更不想单纯地提高点击率但用户却负增长。这种情况下,我们希望将日活(DAU)和点击率(CTR)放在一起来对比展示。

但是这样就不得不面对这样一个问题,那就是DAU和CTR的数值量级是不一样的。我们先假设这个产品的DAU是百万级别的,至于CTR,毫无疑问,它是一个在0到1之间波动的小数。如果我们将他们放在同一刻度下,毫无疑问,点击率的线图会是一条紧紧贴着x轴的线,完全看不出任何趋势。


欢迎大家关注我的个人博客【数洞】 【备用站】

因此,我们需要将他们放在不同的坐标系下来展示:

import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import numpy as np

# 生成数据
month = np.linspace(1, 12, 12)
dau = np.random.randint(200, 300, 12)
ctr = np.random.randint(8, 20, 12) / 100

# 画图
fig, ax1 = plt.subplots(figsize = (10, 5), facecolor='white')

# 左轴
ax1.bar(month, dau, color='g', alpha=0.5)
ax1.set_xlabel('月份')
ax1.set_ylabel('日活(万)')

# 右轴
ax2 = ax1.twinx()
ax2.plot(month, ctr, '-or')
ax2.set_ylabel('点击率')
ax2.set_ylim(0, 0.2)


# 将点击率坐标轴以百分比格式显示
def to_percent(temp, position):
   return '%2.1f'%(100*temp) + '%'
plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))

# 标题
plt.title('2017年XXX日活及点击率趋势')
plt.show()

可以看到,这样我们就将两个不同量级的数据完美地展现在同一张图中了。我们还通过一个函数将右侧的y轴调整成了按照百分比样式展示。

在这里,我们主要使用了twinx()方法,它帮助我们复制了x轴,同时允许我们接下来在右侧的y轴上作图。可能有些朋友已经想到了,twiny()方法会帮助我们做一个y轴数据相同,x轴数据不同且量级差异较大的图。

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容