Java 进阶 & synchronized 同步锁与ReenTrantLock可重入锁的区别

一、ReenTrantLock可重入锁 与synchronized 同步锁的区别

  • 锁的实现

synchronized是Java中的关键字,是依赖于JVM实现的,Java 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多的优化,但这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。而ReenTrantLock是JDK API 实现的,有直接的源码可供阅读。ReenTrantLock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

  • 可重入性

两者都是可重入锁。两者都是同一个线程没进入一次,锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。

  • 锁释放的区别

很明显Synchronized的使用比较方便简洁,并且由编译器去保证锁的加锁和释放,在代码执行时出现异常,JVM会自动释放锁定,因此不会导致死锁现象发生。而ReenTrantLock需要手工声明来加锁和释放锁,为了避免忘记手工释放锁造成死锁,就必须将 unLock()放到finally{} 中。

  • 性能的区别

相比 synchronized,ReentrantLock 增加了一些高级功能。主要有:① 等待可中断;② 可实现公平锁;③ 可实现选择性通知(锁可以绑定多个条件):

1)ReentrantLock 提供了一种能够中断等待锁线程的机制,通过 lock.lockInterruptibly() 来实现这个机制,也就是说正在等待的线程可以选择放弃等待,改为处理其他事情;

2)ReentrantLock 可以指定是公平锁还是非公平,而 synchronized 只能是非公平锁。所谓的公平锁,就是先等待的线程最先获得锁;ReentrantLock 默认是非公平的,可以通过 ReentrantLock 类的 ReentrantLock(boolean fair) 构造方法来制定是否是公平的;

3)synchronized 关键字结合 wait()notify()/notifyAll() 方法使用,可以实现等待/通知机制,ReentrantLock 类则需要借助于 Condition 接口与 newCondition() 方法。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

二、ReentrantLock获取锁的三种方式

ReentrantLock,意思是“可重入锁”,即:自己可以再次获取自己的内部锁。比如,一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁时,还可以再获取的;如果不可锁重入的话,就会造成死锁;同一个线程每次获取锁,锁的计数器都自增1,所以要等到锁的计数器下降为0时,才能最终释放锁。

ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。如:

1)lock(), 如果获取了锁立即返回,如果别的线程持有锁,当前线程则一直处于休眠状态,直到获取锁
 2)tryLock(),如果获取了锁立即返回true,如果别的线程正持有锁,立即返回false;
 3)tryLock(long timeout,TimeUnit unit), 如果获取了锁定立即返回true,如果别的线程正持有锁,会等待参数给定的时间,在等待的过程中,如果获取了锁定,就返回true,如果等待超时,返回false;
 4) lockInterruptibly:如果获取了锁定立即返回,如果没有获取锁定,当前线程处于休眠状态,直到或者锁定,或者当前线程被别的线程中断。

下面来逐个介绍Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。

首先lock()方法,是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

Lock lock = ...;

lock.lock();

try{

    //处理任务

}catch(Exception ex){

}finally{

    lock.unlock();   //释放锁

}
image.gif

tryLock()方法,是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true;如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

所以,一般情况下通过tryLock来获取锁时是这样使用的:

Lock lock = ...;
if(lock.tryLock()) {
     try{
         //处理任务
     }catch(Exception ex){

     }finally{
         lock.unlock();   //释放锁
     } 
}else {
    //如果不能获取锁,则直接做其他事情
}
image.gif
    lockInterruptibly()方法,获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。即,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {
    lock.lockInterruptibly();
    try {  
     //.....
    }
    finally {
        lock.unlock();
    }  
}
image.gif

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。

因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

三、ReentrantLock的具体使用

下面通过一些实例看具体看一下如何使用ReentrantLock。

例子1,lock()的正确使用方法

import java.util.*;
import java.util.concurrent.locks.*;
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    public static void main(String[] args)  {
        final Test test = new Test();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  

    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意这个地方
        lock.lock();
        try {
            System.out.println(thread.getName()+" ---------- get lock");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+" ---------- release lock");
            lock.unlock();
        }
    }
}
image.gif

多运行几次,每次输出的结果不一样,其中一次输出:

image
image.gif

怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

import java.util.*;
import java.util.concurrent.locks.*;
public class Test1 {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  

    public void insert(Thread thread) {
        lock.lock();
        try {
            System.out.println(thread.getName()+" ---------- get lock");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+" ---------- release lock");
            lock.unlock();
        }
    }
}
image.gif

多运行几次,每次输出的结果不一样,其中一次输出:

image
image.gif

这样就是正确地使用Lock的方法了。

例子2,tryLock()的使用方法

import java.util.*;
import java.util.concurrent.locks.*;
public class TryLockTest {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  

    public void insert(Thread thread) {
        if(lock.tryLock()) {
            try {
                System.out.println(thread.getName()+" ---------- get lock");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+" ---------- release lock");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName()+" ---------- get lock failed");
        }
    }
}
image.gif

多运行几次,每次输出的结果不一样:

image
image.gif

例子3,lockInterruptibly()响应中断的使用方法:

import java.util.*;
import java.util.concurrent.locks.*;

public class LockInterruptiblyTest {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        LockInterruptiblyTest test = new LockInterruptiblyTest();
        MyThread thread1 = new MyThread(test);
        MyThread thread2 = new MyThread(test);
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  

    public void insert(Thread thread) throws InterruptedException{
        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
        try {  
            System.out.println(thread.getName()+" ---------- get lock");
            long startTime = System.currentTimeMillis();
            for(    ;     ;) {
                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入数据
            }
        }
        finally {
            System.out.println(Thread.currentThread().getName()+"execute finally");
            lock.unlock();
            System.out.println(thread.getName()+" ---------- release lock");
        }  
    }
}

class MyThread extends Thread {
    private LockInterruptiblyTest test = null;
    public MyThread(LockInterruptiblyTest test) {
        this.test = test;
    }
    @Override
    public void run() {

        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName()+"----------interrupt");
        }
    }
}
image.gif

运行之后,发现thread2能够被正确中断。

输出结果:

image
image.gif

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容