目录大纲
- 混淆矩阵
- ROC曲线
- AUC值
- AUC能拿来干什么
- 总结
- 参考资料
概述
二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve)(Area Under theCurve) 值常被用来评价一个二值分类器 (binary classifier) 的优劣。
对于分类器,或者说分类算法,评价指标主要有precision,recall,F-score等,以及这里要讨论的ROC和AUC。
混淆矩阵(Confusion matrix)
混淆矩阵是理解大多数评价指标的基础,毫无疑问也是理解AUC的基础。丰富的资料介绍着混淆矩阵的概念,这里用一个经典图来解释混淆矩阵是什么。
显然,混淆矩阵包含四部分的信息:
- True negative[TN] :称为真阴率,表示实际是负样本预测成负样本的样本数。
- Flase positive[FP] :称为假阳率,表示实际是负样本预测成正样本的样本数。
- False negative[FN]:称为假阴率,表示实际是正样本预测成负样本的样本数。
- True positive[TP] :称为真阳率,表示实际是正样本预测成正样本的样本数。
对照着混淆矩阵,很容易就能把关系、概念理清楚,但是久而久之,也很容易忘记概念。不妨我们按照位置前后分为两部分记忆,前面的部分是True/False表示真假,即代表着预测的正确性,后面的部分是positive/negative表示正负样本,即代表着预测的结果,所以,混淆矩阵即可表示为正确性-预测结果的集合。现在我们再来看上述四个部分的概念(均代表样本数,下述省略):
- TN,预测是负样本,预测对了
- FP,预测是正样本,预测错了
- FN,预测是负样本,预测错了
- TP,预测是正样本,预测对了
几乎我所知道的所有评价指标,都是建立在混淆矩阵基础上的,包括准确率、精准率、召回率、F1-score,当然也包括AUC。
ROC曲线
事实上,要一下子弄清楚什么是AUC并不是那么容易,首先我们要从ROC曲线说起。对于某个二分类分类器来说,输出结果标签(0还是1)往往取决于输出的概率以及预定的概率阈值,比如常见的阈值就是0.5,大于0.5的认为是正样本,小于0.5的认为是负样本。如果增大这个阈值,预测错误(针对正样本而言,即指预测是正样本但是预测错误,下同)的概率就会降低但是随之而来的就是预测正确的概率也降低;如果减小这个阈值,那么预测正确的概率会升高但是同时预测错误的概率也会升高。实际上,这种阈值的选取也一定程度上反映了分类器的分类能力。我们当然希望无论选取多大的阈值,分类都能尽可能地正确,也就是希望该分类器的分类能力越强越好,一定程度上可以理解成一种鲁棒能力吧。
为了形象地衡量这种分类能力,ROC曲线横空出世!如下图所示,即为一条ROC曲线(该曲线的原始数据第三部分会介绍)。现在关心的是:
- 横轴:False Positive Rate(假阳率,FPR)
- 纵轴:True Positive Rate(真阳率,TPR)
假阳率,简单通俗来理解就是预测为正样本但是预测错了的可能性,显然,我们不希望该指标太高。
真阳率,则是代表预测为正样本但是预测对了的可能性,当然,我们希望真阳率越高越好。
显然,ROC曲线的横纵坐标都在[0,1]之间,自然ROC曲线的面积不大于1。现在我们来分析几个特殊情况,从而更好地掌握ROC曲线的性质:
- (0,0):假阳率和真阳率都为0,即分类器全部预测成负样本
- (0,1):假阳率为0,真阳率为1,全部完美预测正确,happy
- (1,0):假阳率为1,真阳率为0,全部完美预测错误,悲剧
- (1,1):假阳率和真阳率都为1,即分类器全部预测成正样本
- TPR=FPR,斜对角线,预测为正样本的结果一半是对的,一半是错的,代表随机分类器的预测效果
于是,我们可以得到基本的结论:ROC曲线在斜对角线以下,则表示该分类器效果差于随机分类器,反之,效果好于随机分类器,当然,我们希望ROC曲线尽量除于斜对角线以上,也就是向左上角(0,1)凸。
AUC(Area under the ROC curve)
ROC曲线一定程度上可以反映分类器的分类效果,但是不够直观,我们希望有这么一个指标,如果这个指标越大越好,越小越差,于是,就有了AUC。AUC实际上就是ROC曲线下的面积。AUC直观地反映了ROC曲线表达的分类能力。
- AUC = 1,代表完美分类器
- 0.5 < AUC < 1,优于随机分类器
- 0 < AUC < 0.5,差于随机分类器
AUC能拿来干什么
AUC最大的应用应该就是点击率预估(CTR)的离线评估。CTR的离线评估在公司的技术流程中占有很重要的地位,一般来说,ABTest和转全观察的资源成本比较大,所以,一个合适的离线评价可以节省很多时间、人力、资源成本。那么,为什么AUC可以用来评价CTR呢?我们首先要清楚两个事情:
1. CTR是把分类器输出的概率当做是点击率的预估值,如业界常用的LR模型,利用sigmoid函数将特征输入与概率输出联系起来,这个输出的概率就是点击率的预估值。内容的召回往往是根据CTR的排序而决定的。
2. AUC量化了ROC曲线表达的分类能力。这种分类能力是与概率、阈值紧密相关的,分类能力越好(AUC越大),那么输出概率越合理,排序的结果越合理。
我们不仅希望分类器给出是否点击的分类信息,更需要分类器给出准确的概率值,作为排序的依据。所以,这里的AUC就直观地反映了CTR的准确性(也就是CTR的排序能力)
总结
- ROC曲线反映了分类器的分类能力,结合考虑了分类器输出概率的准确性
- AUC量化了ROC曲线的分类能力,越大分类效果越好,输出概率越合理
- AUC常用作CTR的离线评价,AUC越大,CTR的排序能力越强
参考资料:
[1]From 机器学习和统计里面的auc怎么理解?
[2]From 精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么?
[3]From 机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率
[4]From ROC曲线、AUC值