- Define Problem : Investigate and characterize the problem in order to better understand the goals of the project.
- Analyze Data : Use descriptive statistics and visualization to better understand the data you have available.
- Prepare Data : Use data transforms in order to better expose the structure of the prediction problem to modeling algorithms.
- Evaluate Algorithms : Design a test harness to evaluate a number of standard algorithms on the data and select the top few to investigate further.
- Improve Results : Use algorithm tuning and ensemble methods to get the most out of
well-performing algorithms on your data. - Present Results: Finalize the model, make predictions and present results.
A predictive modeling machine learning project can be broken down into 6 top-level tasks
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
推荐阅读更多精彩内容
- 7月15日,绝对是个令我终身难忘的日子。这天早上,由于大姨妈推迟了一周没来,我试探性地用了个验孕棒,结果,居然是两...