深度学习(八):深度学习框架

一,基础介绍

在前面的内容中,所有的包括函数、各种层的封装都是我们自己手动码出来的,在实际的工程应用中,其实有很多东西是可以重复利用的,所以有些大佬就将其封装了起来,方便使用

深度学习框架的主要功能有以下方面:

  • 提供了一组API和工具,可以方便地定义和配置神经网络模型的结构和参数,例如层、激活函数、优化器等。
  • 提供了计算引擎,可以执行神经网络模型的前向传播和反向传播算法,并进行梯度计算和参数更新,从而实现模型的训练和优化
  • 提供了数据管理和预处理工具,可以加载和处理训练数据和测试数据,并进行数据增强和批量处理等操作,从而提高模型的鲁棒性和泛化性能。
  • 支持在多个GPU或分布式系统上进行高效的并行计算和训练,从而加速模型的训练和优化过程。
  • 也支持将训练好的模型部署到不同的硬件平台上,并进行推理和预测,从而实现模型的应用。

常用的学习框架主要有:

  • TensorFlow:是Google Brain团队基于Google在2011年开发的深度学习基础架构DistBelief构建的
  • MXNet:亚马逊首席科学家李沐带领团队开发的深度学习框架
  • Pytorch:是一个Python优先的深度学习框架,能够在强大的GPU加速基础上实现张量和动态神经网络
  • PaddlePaddle(飞桨):百度自主研发、功能完备、开源开放的产业级深度学习平台

通常学习一个框架即可,换框架就查一查知道怎么改API就行,此文主要说Pytorch

二,Pytorch基础(引用知乎

2.1 Tensor

就如同在numpy里面有np.array这样的数组结构,在Pytorch里面也有,叫作tensor

代码操作见下:

import torch #导入pytorch

x = torch.tensor([5.5, 3])
print(x)

# 对tensor进行操作
y = x + 2
print(y)


输出为

2.2 GPU加速

GPU的并行计算能力使得其。PyTorch提供了简单易用的API,让我们可以很容易地在CPU和GPU之间切换计算。

代码如下:

import torch

# 检查是否有可用的GPU
if torch.cuda.is_available():
    print("There is a GPU available.")
else:
    print("There is no GPU available.")

# 可以把数据放到GPU上
x = x.to('cuda') #已有的数组x移到GPU
x = torch.tensor([1.0, 2.0], device='cuda') #直接在GPU上创建

2.3 自动求导

使用梯度下降法的时候,需要计算梯度,在Pytorch中非常简单,先通过tensor.requires_grad=True表示要计算此张量的梯度,然后再调用.backward()方法,来计算和存储梯度,最后可通过.grad来访问

import torch

# 创建一个tensor并设置requires_grad=True来追踪其计算历史
x = torch.ones(2, 2, requires_grad=True)

#... 省略计算操作

# 使用.backward()来进行反向传播,计算梯度
out.backward()

# 输出梯度d(out)/dx
print(x.grad)

三,Pytorch神经网络

3.1 构建神经网络

PyTorch提供了torch.nn库,用于构建神经网络的工具库。torch.nn库依赖于autograd库来定义和计算梯度。nn.Module包含了神经网络的层以及返回输出的forward(input)方法。

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        # 输入图像channel:1,输出channel:6,5x5卷积核
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)

        # 全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 使用2x2窗口进行最大池化
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # 如果窗口是方的,只需要指定一个维度
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)

        x = x.view(-1, self.num_flat_features(x))

        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)

        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 获取除了batch维度之外的其他维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

net = Net()
print(net)

首先定义了一个Net类,这个类继承自nn.Module。然后在init方法中定义了网络的结构,在forward方法中定义了数据的流向

3.2 自定义数据集

自定义数据集需要继承Dataset类,并实现lengetitem两个方法。

from torch.utils.data import Dataset, DataLoader

class MyDataset(Dataset):
    def __init__(self, x_tensor, y_tensor):
        self.x = x_tensor
        self.y = y_tensor

    def __getitem__(self, index):
        return (self.x[index], self.y[index])

    def __len__(self):
        return len(self.x)

x = torch.arange(10)
y = torch.arange(10) + 1

my_dataset = MyDataset(x, y)
loader = DataLoader(my_dataset, batch_size=4, shuffle=True, num_workers=0)

for x, y in loader:
    print("x:", x, "y:", y)

3.3 模型的保存和加载

PyTorch提供了简单的API来保存和加载模型。最常见的方法是使用torch.save来保存模型的参数,然后通过torch.load来加载模型的参数。

# 保存
torch.save(model.state_dict(), PATH)

# 加载
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容