贝叶斯的两个概率
在贝叶斯计算中,其实主要是两个概率的理解
- 一个是基础概率(先验概率)
- 一个是后验概率(现象概率)
p(a|b)=p(ab)/p(b) 表示在b发生的情况下,验证a发生的概率
为了更好理解,来来来画个维恩图 (这个其实就是 inner jion的示意图,只是此处表意不同)
公式推广到流失判定
要求3日内未续投的判定流失的概率,可以转化为:3日内未续投的所有用户中有多少是会最后流失掉的?
也就是验证:未续投的情况下,流失发生的概率。
设定流失设定为事件a,设定3日内未续投设定为事件b;
p(a):整体流失概率,p(b):3日内未续投概率
则3日内未投资判定为流失用户的概率为
p(a|b)=p(b|a)*p(a)/p(b)
那么,针对p(b|a) 咋么求呢?
这个不用求啊,对于其他的场景中还是需要判断一下,但是在续投场景中,
但凡是流失用户他们的3日内未投资的概率一定是1啊哈哈哈哈。
所以,针对未续投流失的判定公式可以简化为
p(a|b)=p(a)/p(b)
计算连续概率
以上的推广计算是以3日的流失概率为样本进行计算的,将结算后从第0日开始一直到30日的数据,然后既可画出流失概率图 (图中数据已脱敏处理)。
参考: