2021-12-31 Python-23

pandas

pandas数据结构

pandas 有 2 个常用的数据结构:Series 和 Dataframe
一. Series
Series 是一个一维的数组型对象,包括了索引和值序列。

  1. 列表,元组,字典和数组都能转换成 Series
import pandas as pd
list1=[4,7,5,-2]
s1=pd.Series(list1)
s1
'''
0    4
1    7
2    5
3   -2
dtype: int64
'''
#最左边一列为index列,默认为数字序列。第二列为值序列
s2=pd.Series(list1,index=['a','b','c','d'],name='number')
'''
a    4
b    7
c    5
d   -2
Name: number, dtype: int64
'''
#也可以在生成Series时指定索引和列索引的名称
dict1={'Ohio':35000,'Texas':71000,'Oregon':16000,'Utah':5000}
s3=pd.Series(dict1)
s3
'''
Ohio      35000
Texas     71000
Oregon    16000
Utah       5000
dtype: int64
'''
#字典转换成Series时,index为排序好的键值
s4=pd.Series(dict1,index=['Ohio','California','Oregon','Texas'])
s4
'''
Ohio          35000.0
California        NaN
Oregon        16000.0
Texas         71000.0
dtype: float64
'''
#在创建时,也可以修改index,当index中出现key不存在的值时,得到Series该项对象的值为NaN缺失值

  1. Series 的属性
s2.values
#array([ 4,  7,  5, -2], dtype=int64)
s2.index
#Index(['a', 'b', 'c', 'd'], dtype='object')
s2.name
#'number'
s2.index.name='order'  #设置总索引名
s2
'''
order
a    4
b    7
c    5
d   -2
Name: number, dtype: int64
'''
  1. Series 的索引和切片
s2['a']  #4
s2[0]  #4 通过标签或者数字索引进行索引
s2[['a','c']]  #索引多个值用列表的形式传入
'''
order
a    4
c    5
Name: number, dtype: int64
'''
s2['a':'c'] #Series 的包含左括号处和右括号处的值
'''
order
a    4
b    7
c    5
Name: number, dtype: int64
'''
s2[1:2] #不包含右括号的值
'''
order
b    7
Name: number, dtype: int64
'''

二. DataFrame
DataFrame 相当于共用索引的Series的字典,其中字典的键值为列索引

  1. DataFrame 的构建
dict2={'state':['Ohio','Ohio','Ohio','Nevada','Nevada','Nevada'],
       'year':[2000,2001,2002,2001,2002,2003],
       'pop':[1.5,1.7,3.6,2.4,2.9,3.2]}
df1=pd.DataFrame(dict2)
df1
'''
  state  year  pop
0    Ohio  2000  1.5
1    Ohio  2001  1.7
2    Ohio  2002  3.6
3  Nevada  2001  2.4
4  Nevada  2002  2.9
5  Nevada  2003  3.2
'''
#默认列索引为字典的键值,行索引为数字索引
df2=pd.DataFrame(dict2,columns=['year','state','pop','debt'],index=['one','two','three','four','five','six'])
df2
'''
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN
six    2003  Nevada  3.2  NaN
'''
#将列索引重新排列,原先不存在的列名中的值为NaN,对行索引进行重新赋值

#包含字典的嵌套字典也可以转换成DataFrame
dict2={'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
df3=pd.DataFrame(dict2)
df3
'''
      Nevada  Ohio
2001     2.4   1.7
2002     2.9   3.6
2000     NaN   1.5
'''
#将外层字典的key作为列索引,将内层字典的键作为行索引

#包含Series的字典转换成DataFrame
df4=pd.DataFrame({'Ohio':df3['Ohio'][:2],'Nevada':df3['Nevada'][:-1]})
df4
'''
      Ohio  Nevada
2001   1.7     2.4
2002   3.6     2.9
'''
#将key值作为列索引,行索引由Series自带,也可以在创建过程中指定行索引

可以通过pd.DataFrame函数生成DataFrame的对象类型和索引特征

类型 注释 代码实现
2D ndarray,列表或者元组构成的列表 数据的矩阵,行列的索引可选 ndarray_2d=np.arange(20).reshape(4,5) ddf=pd.DataFrame(ndarray_2d,columns=[1,2,3,4,5],index=['a','b','c','d'])
数组、列表、元组构成的字典 每个序列为DataFrame的一列,所有的序列必须长度一致 如上
Series构成的字典 每个Series为一列,行索引由所有的Series决定,列索引为key值 如上
字典嵌套字典 字典外部的Key为列索引,内部key为行索引 如上
字典或者Series构成的列表 以列表中的每个元素为一行,字典键或者Series的索引为列索引 dict2={'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}} df3=pd.DataFrame(dict2)                         list_s=[df3['Ohio'],df3['Nevada']]    ddf2=pd.DataFrame(list_s)
  1. DataFrame 的属性
df2.index
#Index(['one', 'two', 'three', 'four', 'five', 'six'], dtype='object')
df2.columns
#Index(['year', 'state', 'pop', 'debt'], dtype='object')
df2.values
'''
array([[2000, 'Ohio', 1.5, nan],
       [2001, 'Ohio', 1.7, nan],
       [2002, 'Ohio', 3.6, nan],
       [2001, 'Nevada', 2.4, nan],
       [2002, 'Nevada', 2.9, nan],
       [2003, 'Nevada', 3.2, nan]], dtype=object)
'''
  1. DataFrame 的列索引
df2['year']
df2.year #以字典键值或者属性的方式检索
df2[['year','state']]

  1. 列值的修改
#赋值标量值
df2['debt']=1

#赋值值数组/值列表
df2['debt']=[x for x in range(6)]
df2
'''
       year   state  pop  debt
one    2000    Ohio  1.5     0
two    2001    Ohio  1.7     1
three  2002    Ohio  3.6     2
four   2001  Nevada  2.4     3
five   2002  Nevada  2.9     4
six    2003  Nevada  3.2     5
'''
df2['debt']=np.arange(6.0)
df2
'''
      year   state  pop  debt
one    2000    Ohio  1.5   0.0
two    2001    Ohio  1.7   1.0
three  2002    Ohio  3.6   2.0
four   2001  Nevada  2.4   3.0
five   2002  Nevada  2.9   4.0
six    2003  Nevada  3.2   5.0
'''

#赋值Series
arr2=np.full(3,3)
s5=pd.Series(arr2,index=['one','three','six'])
df2['debt']=s5
df2
'''
       year   state  pop  debt
one    2000    Ohio  1.5   3.0
two    2001    Ohio  1.7   NaN
three  2002    Ohio  3.6   3.0
four   2001  Nevada  2.4   NaN
five   2002  Nevada  2.9   NaN
six    2003  Nevada  3.2   3.0
'''
#如果Series中的index和DataFrame中的index不在交集范围内,该索引对应的信息会被过滤掉
s6=pd.Series(arr2,index=['one','two','seven'])
df2['debt']=s6
df2
'''
      year   state  pop  debt
one    2000    Ohio  1.5   3.0
two    2001    Ohio  1.7   3.0
three  2002    Ohio  3.6   NaN
four   2001  Nevada  2.4   NaN
five   2002  Nevada  2.9   NaN
six    2003  Nevada  3.2   NaN
'''

#列的增加,通过对列索引的引用直接赋值
df2['eastern']=df2['state']=='Ohio' #不能通过df2.eastern的方式赋值
df2
'''
       year   state  pop  debt  eastern
one    2000    Ohio  1.5   3.0     True
two    2001    Ohio  1.7   3.0     True
three  2002    Ohio  3.6   NaN     True
four   2001  Nevada  2.4   NaN    False
five   2002  Nevada  2.9   NaN    False
six    2003  Nevada  3.2   NaN    False
'''

#列的删除
del df2['eastern']


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容