Python 服务实现可观测性最佳实践

前言

本次实践主要是介绍 Python 服务通过无侵入的方式接入观测云进行全面的可观测。

环境信息

- 系统环境:主机环境

- 开发语言:Python2.7+

- APM 探针包:ddtrace

接入方案

准备工作

安装 DataKit

主机安装 DataKit

# 需要把token 改成观测云空间的实际token值(可在观测云控制台-->集成-->Datakit 上面获取)

DK_DATAWAY="https://openway.guance.com?token=tkn_xxxxxx" bash -c "$(curl -L https://static.guance.com/datakit/install.sh)"

开启采集器

开启日志采集器

cp /usr/local/datakit/conf.d/log/logging.conf.sample /usr/local/datakit/conf.d/log/logging.conf

vim /usr/local/datakit/conf.d/log/logging.conf

在 [[inputs.logging]] 采集项目下的 logfiles 添加 python 日志的路径:  "/root/guance/dd-test/python_log/*"

开启 ddtrace 采集器

cp /usr/local/datakit/conf.d/ddtrace/ddtrace.conf.sample  /usr/local/datakit/conf.d/ddtrace/ddtrace.conf

重启 Datakit

# 在主机终端输入命令

datakit service -R

准备测试环境

以下实践在 Linux 主机环境下操作

安装 Python 依赖包:

pip install flask

pip install ddtrace

新建文件夹存储日志数据:

mkdir -p /root/guance/dd-test

准备测试代码

服务 A 代码如下:

vim python_demo.py


import logging

from flask import Flask

log = logging.getLogger(__name__)

log.level = logging.INFO

stream_handler = logging.StreamHandler()

formatter = logging.Formatter('%(asctime)s %(levelname)s %(filename)s %(dd.service)s %(dd.trace_id)s %(dd.trace_id)s %(funcName)s:%(lineno)s %(message)s')

stream_handler.setFormatter(formatter)

log.addHandler(stream_handler)

app = Flask(__name__)

@app.route('/a', methods=['GET'])

def index():

    # 打印一条log日志

    log.info('Hello, World!')

    return "abcdefg", 200

if __name__ == '__main__':

    app.run(host="0.0.0.0", port=10001, debug=True)

启动业务服务

# DD_AGENT_HOST、DD_AGENT_PORT  分别为datakit 访问的地址以及端口

DD_SERVICE=python_demo \

DD_TAGS=project:python_demo,env:test,version:v1 \

DD_AGENT_HOST=localhost \

DD_AGENT_PORT=9529 \

ddtrace-run python3 python_demo.py &> /root/guance/dd-test/a.log 

调用链接入

访问服务 A,服务会产生调用链上传至 DataKit。

curl http://localhost:10001/a          # 终端使用curl 访问,浏览器则直接访问url即可

日志接入

DataKit 会定时采集服务产生的日志,通过观测云 Pipeline 提取日志中的 status, service_name, trace_id 等字段,从而实现调用链和日志的串联效果。

# pipeline 的解析规则(链路与日志通过trace_id 关联起来)

grok(_, "%{TIMESTAMP_ISO8601:time} %{LOGLEVEL:status} %{DATA:file_name} %{DATA:service_name} %{DATA:trace_id} %{DATA:span_id} " )


实践效果

- 调用链以及调用链关联日志效果


- 日志采集效果

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容