Token的简单理解

1、什么是Token?

  • Token的意思是“令牌”,是服务端生成的一串字符串,作为客户端进行请求的一个标识。

  • 当用户第一次登录后,服务器生成一个token并将此token返回给客户端,以后客户端只需带上这个token前来请求数据即可,无需再次带上用户名和密码。

  • 简单Token的组成:uid(用户唯一的身份标识)、time(当前时间的时间戳)、sign(签名,token的前几位以哈希算法压缩成的一定长度的十六进制字符串。为防止token泄露)。

2、身份认证概述

  • 概述:由于HTTP是一种没有状态的协议,它并不知道是谁访问了我们的应用。这里把用户看成是客户端,客户端使用用户名还有密码通过了身份验证,不过下次这个客户端再发送请求时候,还得再验证一下。

  • 解决方法:当用户请求登录的时候,如果没有问题,在服务端生成一条记录,在这个记录里可以说明登录的用户是谁,然后把这条记录的id发送给客户端,客户端收到以后把这个id存储在cookie里,下次该用户再次向服务端发送请求的时候,可以带上这个cookie,这样服务端会验证一下cookie里的信息,看能不能在服务端这里找到对应的记录,如果可以,说明用户已经通过了身份验证,就把用户请求的数据返回给客户端。

  • 总结:利用session,那个id值就是sessionId。我们需要在服务端存储为用户生成的session,这些session会存储在内存,磁盘,或者数据库。

3、基于Token机制的身份认证

  • 说明:使用token机制的身份验证方法,在服务器端不需要存储用户的登录记录。

  • 大概流程:客户端使用用户名和密码请求登录。服务端收到请求,验证用户名和密码。验证成功后,服务端会生成一个token,然后把这个token发送给客户端。客户端收到token后把它存储起来,可以放在cookie或者Local Storage(本地存储)里。客户端每次向服务端发送请求的时候都需要带上服务端发给的token。服务端收到请求,然后去验证客户端请求里面带着token,如果验证成功,就向客户端返回请求的数据。

4、Token机制进行登录认证

  1. 用设备mac地址作为token
  • 客户端:客户端在登录时获取设备的mac地址,将其作为参数传递到服务端

  • 服务端:服务端接收到该参数后,便用一个变量来接收,同时将其作为Token保存在数据库,并将该token设置到session中。客户端每次请求的时候都要统一拦截,将客户端传递的token和服务器端session中的token进行对比,相同则登录成功,不同则拒绝。

  • 总结:此方式客户端和服务端统一了唯一的标识,并且保证每一个设备拥有唯一的标识。缺点是服务器端需要保存mac地址;优点是客户端无需重新登录,只要登录一次以后一直可以使用,对于超时的问题由服务端进行处理。

  1. 用sessionid作为token
  • 客户端:客户端携带用户名和密码登录

  • 服务端:接收到用户名和密码后进行校验,正确就将本地获取的sessionid作为token返回给客户端,客户端以后只需带上请求的数据即可。

  • 此方式的优点是方便,不用存储数据,缺点就是当session过期时,客户端必须重新登录才能请求数据。

  • 当然,对于一些保密性较高的应用,可以采取两种方式结合的方式,将设备mac地址与用户名密码同时作为token进行认证。

  • APP利用token机制进行身份认证

  • 用户在登录APP时,APP端会发送加密的用户名和密码到服务器,服务器验证用户名和密码,如果验证成功,就会生成相应位数的字符产作为token存储到服务器中,并且将该token返回给APP端。

  • 以后APP再次请求时,凡是需要验证的地方都要带上该token,然后服务器端验证token,成功返回所需要的结果,失败返回错误信息,让用户重新登录。其中,服务器上会给token设置一个有效期,每次APP请求的时候都验证token和有效期。

5、Token的存储

  • token可以存到数据库中,但是有可能查询token的时间会过长导致token丢失(其实token丢失了再重新认证一个就好,但是别丢太频繁,别让用户没事儿就去认证)。

  • 为了避免查询时间过长,可以将token放到内存中。这样查询速度绝对就不是问题了,也不用太担心占据内存,就算token是一个32位的字符串,应用的用户量在百万级或者千万级,也是占不了多少内存的。

6、Token的加密

  • token是很容易泄露的,如果不进行加密处理,很容易被恶意拷贝并用来登录。

  • 加密方式:在存储的时候把token进行对称加密存储,用到的时候再解密。文章最开始提到的签名sign:将请求URL、时间戳、token三者合并,通过算法进行加密处理。

7、注意

  • 在网络层面上token使用明文传输的话是非常危险的,所以一定要使用HTTPS协议。

8、总结

  • 以上就是对于Token在用户身份认证过程中的简单总结

本文参考自:

http://baijiahao.baidu.com/s?id=1586852093066659408&wfr=spider&for=pc

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容