Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
Input: 2
Output: [0,1,1]
Note:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
解释下题目:
给定一个正数,然后返回它之前每一个数字中(二进制)的1的个数
1. 动态规划
实际耗时:1ms
public int[] countBits(int num) {
int[] res = new int[num + 1];
for (int i = 1; i <= num; i++) {
res[i] = res[i >> 1] + (i & 1);
}
return res;
}
那这种题目肯定是动态规划,重要的是理解的是一个数n的两倍其实就是后面加个0,所以就有了这个算法