Wallis公式

Wallis

这个公式叫做 Wallis公式,考研的很多人都叫他 点火公式,废话少说,开搞!

\displaystyle I_n=\int_0^{\frac\pi2}\sin^nx\text{d}x=\int_0^{\frac\pi2}\cos^nx\text{d}x=\begin{cases} \dfrac{n-1}{n}\cdot\dfrac{n-3}{n-2}\cdots\dfrac{2}{3},&n为大于1的奇数\\ \\ \dfrac{n-1}{n}\cdot\dfrac{n-3}{n-2}\cdots\dfrac{1}{2}\cdot\dfrac{\pi}{2},&n为正偶数 \end{cases}

\displaystyle I_n=\int_0^{\pi}\sin^nx\text{d}x=2\int_0^{\frac\pi2}\sin^nx\text{d}x

\displaystyle \int_0^{\pi}\cos^nx\text{d}x=\begin{cases}\displaystyle 2\int_0^{\frac\pi2}\cos^{n}x\text{d}x,&n为正偶数\\ 0,&n为正奇数\\ \end{cases}

\displaystyle\int_0^{2\pi}\sin^{n}x\text{d}x=\int_0^{2\pi}\cos^{n}x\text{d}x=\begin{cases} 4\dfrac{n-1}{n}\cdot\dfrac{n-3}{n-2}\cdots\dfrac{1}{2}\cdot\dfrac{\pi}{2},&n为正偶数\\ 0,&n为正奇数\\ \end{cases}

证明

\begin{aligned} I_n=&\int_0^{\frac\pi2}\sin^nx\text{d}x\\ =&-\cos x\sin^{n-1}x\bigg|_0^{\frac\pi2}-\int_0^{\frac\pi2}-(n-1)\cos^2x\sin ^{n-2}x\text{d}x\\ =&(n-1)\int_0^{\frac\pi2}\cos^2x\sin^{n-2}x\text{d}x\\ =&(n-1)\int_0^{\frac\pi2}(1-\sin^2x)\sin^{n-2}x\text{d}x\\ =&(n-1)\int_0^{\frac\pi2}\sin^{n-2}x\text{d}x-(n-1)\int_0^{\frac\pi2}\sin^nx\text{d}x\\ =&(n-1)I_{n-2}-(n-1)I_n\\ =&\dfrac{n-1}{n}I_{n-2} \end{aligned}


\therefore \begin{cases}\dfrac{I_{2n+1}}{I_{2n-1}}=\dfrac{2n}{2n+1}\\\\\dfrac{I_{2n}}{I_{2n-2}}=\dfrac{2n-1}{2n}\end{cases}

\displaystyle\dfrac{I_3}{I_1}\cdot\dfrac{I_5}{I_3}\cdots\dfrac{I_{2n+1}}{I_{2n-1}}=\dfrac{2\times1}{2\times1+1}\cdot\dfrac{2\times2}{2\times2+1}\cdots\dfrac{2\times n}{2\times n+1}=\dfrac{(2n)!!}{(2n+1)!!}

\displaystyle\dfrac{I_2}{I_0}\cdot\dfrac{I_4}{I_2}\cdots\dfrac{I_{2n}}{I_{2n-2}}=\dfrac{2\times1-1}{2\times2}\cdot\dfrac{2\times2-1}{2\times2}\cdots\dfrac{2\times n-1}{2\times n}=\dfrac{(2n-1)!!}{(2n)!!}


\displaystyle I_n=\int_0^{\frac\pi2}\sin^nx\text{d}x=\begin{cases}\dfrac\pi2,&n=0\\1,&n=1\\\dfrac{(2k)!!}{(2k+1)!!},&n=2k+1\\\dfrac{(2n-1)!!}{(2n)!!}\cdot\dfrac{\pi}{2},&n=2k\end{cases}

剩下几个根据奇偶性易得...

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 在不同时间不同场合不同地点我们会遇见不一样的人 有些人只适合一面之缘,而有的人却会为你的人生留下一段深深的印记...
    Y橙子先生X阅读 1,534评论 2 6
  • “小朵:妈妈现在缠着你啰,小时候五个孩子就你小脑瓜问题最多” “妈妈:放了盐的水,鸡血一淋进去就慢慢...
    红楼梦_7b1e原创阅读 3,388评论 2 9
  • 文丨刘子睿丨第39篇原创丨800字 编者按 4月10号晚上22:00,子睿参加了北京卫视的《跨界歌王》节目的录制,...
    子睿自媒体阅读 2,649评论 0 0
  • 拿起手机,点进简书,里面的美文一页页,一张张,每次都像见到久违的老友,莫名的兴奋。有时候,就会在想,什么时候...
    凉温阅读 3,085评论 0 0