深入浅出QPS、RT和最佳线程数

什么是QPS:

QPS是每秒钟处理完请求的次数。这里的请求不是指一个查询或者数据库查询,是包括一个业务逻辑的整个流程,也就是说每秒钟响应的请求次数。

什么是响应时间:

响应时间即RT,处理一次请求所需要的平均处理时间。对于RT,客户端和服务端是大不相同的,因为请求从客户端到服务端,需要经过广域网,所以客户端RT往往远大于服务端RT,同时客户端的RT往往决定着用户的真实体验,服务端RT往往是评估我们系统好坏的一个关键因素。

最佳线程数的困扰:

在开发过程中,我们一定面临过很多的线程数量的配置问题,这种问题往往让人摸不到头脑,往往都是拍脑袋给出一个线程池的数量,但这可能恰恰是不靠谱的,过小的话会导致请求RT极具增加,过大也一样RT也会升高。所以对于最佳线程数的评估往往比较麻烦。

QPS和RT的关系:

单线程场景:

假设我们的服务端只有一个线程,那么所有的请求都是串行执行,我们可以很简单的算出系统的QPS,也就是:QPS = 1000ms/RT。假设一个RT过程中CPU计算的时间为49ms,CPU Wait Time 为200ms,那么QPS就为1000/49+200 = 4.01。

多线程场景

我们接下来把服务端的线程数提升到2,那么整个系统的QPS则为:2 *(1000/49+200)=8.02。可见QPS随着线程的增加而线性增长,那QPS上不去就加线程呗,听起来很有道理,公式也说得通,但是往往现实并非如此,后面会聊这个问题。

最佳线程数?

从上面单线程场景来看,CPU Wait time为200ms,你可以理解为CPU这段时间什么都没做,是空闲的,显然我们没把CPU利用起来,这时候我们需要启多个线程去响应请求,把这部分利用起来,那么启动多少个线程呢?我们可以估算一下 空闲时间200ms,我们要把这部分时间转换为CPU Time,那么就是200+49/49 = 5.08个,不考虑上下文切换的话,约等于5个线程。同时还要考虑CPU的核心数和利用率问题,那么我们得到了最佳线程数计算的公式:RT/CPU Time * coreSize * cupRatio

最大QPS?

得到了最大的线程数和QPS的计算方式:

QPS = Thread num * 单线程QPS = (CPU Time + CPU Wait Time)/CPU Time * coreSize * CupRatio * (1000ms/(CPU Time + CPU Wait Time)) = 1000ms/(CPU Time) * coreSize * cpuRatio

所以决定一个系统最大的QPS的因素是CPU Time、CoreSize和CPU利用率。看似增加CPU核数(或者说线程数)可以成倍的增加系统QPS,但实际上增加线程数的同时也增加了很大的系统负荷,更多的上下文切换,QPS和最大的QPS是有偏差的。

CPU Time & CPU Wait Time & CPU 利用率

CPU Time就是一次请求中,实际用到计算资源。CPU Time的消耗是全流程的,涉及到请求到应用服务器,再从应用服务器返回的全过程。实际上这取决于你的计算的复杂度。

CPU Wait Time是一次请求过程中对于IO的操作,CPU这段时间可以理解为空闲的,那么此时要尽量利用这些空闲时间,也就是增加线程数。

CPU 利用率是业务系统利用到CPU的比率,因为往往一个系统上会有一些其他的线程,这些线程会和CPU竞争计算资源,那么此时留给业务的计算资源比例就会下降,典型的像,GC线程的GC过程、锁的竞争过程都是消耗CPU的过程。甚至一些IO的瓶颈,也会导致CPU利用率下降(CPU都在Wait IO,利用率当然不高)。

增加CPU核数对QPS的提升

从上面的公式我们可以看出,假设CPU Time和CPU 利用率不变,增加CPU的核数能使QPS呈线性增长。但是很遗憾,现实中不是这样的....首先先看一下阿姆达尔定律:

阿姆达尔定律.png

阿姆达尔定律是一个很有意思的定律,简单的我们可以理解为,程序中可并行代码的比例决定你增加处理器(总核心数)所能带来的速度提升的上限
。换句话说就是串行化对于你系统吞吐量的影响。举个栗子:

1.坐车问题:

假设你想从望京去顺义,那么你智能坐着一辆车过去,虽然现在有十辆车,你也不能提升十倍的效率,这里F就是1,因为所有的动作都需要串行,speedup就等于1,效率没提升,虽然你有九辆车。

2.写代码问题:

假设你现在开发一个系统,你可以把所有的任务均分下去,假设10个人帮你开发,那么F就为0,N为10,那么speedup等于10,也就是说你提升了10倍的速率。

这里的N就是我们的核数。在F为0的时候可以成倍增加计算效率,但是很遗憾F不为0,同时随着你的请求数的增加,F的值也在增加,当这个串行率达到一定程度的时候,你的系统是没有任何效果的提升的。当F不变的时候,N增加,那么Speedup增加。但是当N->∞,那么整个公式就变成了1/F,也就是说当核数不断增大的时候,speedup是有上限的。
同样,对于1000ms/(CPU Time) * coreSize * cpuRatio我们不断的增加CoreSize或者说线程数的时候。我们的请求变多了,随之而来的就是大量的上下文切换、大量的GC、大量的锁征用,这些串行化的因素会大大增加F值,也会大大的增加CPU Time。假设我们的串行部分不变的话,增大核数,CPU不能得到充分的利用,利用率也会降低。所以,对于阿姆达尔定律而言,串行化的比率才是决定着是否能成倍增长效率的关键。也就是说最佳线程数也好,最大QPS也好,增加内核数量不一定能是系统指标有成倍的增长。更关键的是能改变自己的架构,减小串行的比率,让CPU更充分的利用,达到资源的最大利用率。

再看一下最佳线程数和最大QPS

通过上面一些例子,我们发现当线程数增加的时候,线程的上下文切换会增加,GC Time会增加。这也就导致CPU time 增加,QPS减小,RT也会随着增大。这显然不是我们希望的,我们希望的是在核数一定的情况下找到某个点,使系统的QPS最大,RT相对较小。所以我们需要不断的压测,调整线程池,找到这个QPS的峰值,并且使CPU的利用率达到100%,这样才是系统的最大QPS和最佳线程数。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容