基于python 信用卡评分系统 的数据分析

基于python 信用卡评分系统 的数据分析

import pandas as pd
import matplotlib.pyplot as plt #导入图像库
from sklearn.ensemble import RandomForestRegressor
# 用随机森林对缺失值预测填充函数
def set_missing(df):
    # 把已有的数值型特征取出来
    process_df = df.ix[:,[5,0,1,2,3,4,6,7,8,9]]
    # 分成已知该特征和未知该特征两部分
    known = process_df[process_df.MonthlyIncome.notnull()].as_matrix()
    unknown = process_df[process_df.MonthlyIncome.isnull()].as_matrix()
    # X为特征属性值
    X = known[:, 1:]
    # y为结果标签值
    y = known[:, 0]
    # fit到RandomForestRegressor之中
    rfr = RandomForestRegressor(random_state=0, n_estimators=200,max_depth=3,n_jobs=-1)
    rfr.fit(X,y)
    # 用得到的模型进行未知特征值预测
    predicted = rfr.predict(unknown[:, 1:]).round(0)
    print(predicted)
    # 用得到的预测结果填补原缺失数据
    df.loc[(df.MonthlyIncome.isnull()), 'MonthlyIncome'] = predicted
    return df
data = pd.read_csv(r'E:\Python\Source\CreditScore\cs-training.csv')
process_df = data.iloc[:,[5,0,1,2,3,4,6,7,8,9]]
known = process_df[process_df.MonthlyIncome.notnull()].as_matrix()
unknown = process_df[process_df.MonthlyIncome.isnull()].as_matrix()
X = known[:, 1:]
y = known[:, 0]
# fit到RandomForestRegressor之中
rfr = RandomForestRegressor(random_state=0, n_estimators=200,max_depth=3,n_jobs=-1)
rfr.fit(X,y)
# 用得到的模型进行未知特征值预测
predicted = rfr.predict(unknown[:, 1:]).round(0)
print(predicted)
data.loc[(data.MonthlyIncome.isnull()), 'MonthlyIncome'] = predicted
[8311. 1159. 8311. ... 1159. 2554. 2554.]
data=data.dropna()#删除比较少的缺失值
data = data.drop_duplicates()#删除重复项
#异常值处理
#x1 = data["age"]
x2 = data["RevolvingUtilizationOfUnsecuredLines"]
x3 = data["DebtRatio"]
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.boxplot([x2,x3])
ax.set_xticklabels(["RevolvingUtilizationOfUnsecuredLines","DebtRatio"])
[Text(0,0,'RevolvingUtilizationOfUnsecuredLines'), Text(0,0,'DebtRatio')]
output_5_1.png
#异常值处理
data = data[data["age"] > 0]
data = data[data['NumberOfTime30-59DaysPastDueNotWorse'] < 90]#剔除异常值
# 好坏客户的整体分析
data['SeriousDlqin2yrs']=1-data['SeriousDlqin2yrs']
grouped = data["SeriousDlqin2yrs"].groupby(data["SeriousDlqin2yrs"]).count()
print("坏客户占比:{:.2%}".format(grouped[0]/grouped[1]))
print(grouped)
grouped.plot(kind="bar")
output_7_2.png
坏客户占比:7.16%
SeriousDlqin2yrs
0      9706
1    135648
Name: SeriousDlqin2yrs, dtype: int64





<matplotlib.axes._subplots.AxesSubplot at 0x126eecc0>
 Y = data['SeriousDlqin2yrs']
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容