Brief workflow of RNAseq analysis from Wei

1. General workflow for RNAseq analysis

After standard sequencing process (recommended for the illumina high-throughput sequencing protocol), raw data were obtained and processed with python (higher than 3.7 was recommended) for QC, Trimming, Gene alignment, and Expression count. Subsequently, R (higher than 4.2.0 was recommended) was used for the analysis of differential expressions, and web-based tools were used for annotation / enrichment analysis.

the general workflow for RNAseq analysis

2. Preparations

System requirement

Generally speaking, the linux system (ubuntu or deepin OS) was recommended for the python process, while anaconda or miniconda was recommended for the installation of python.
ubuntu: Enterprise Open Source and Linux | Ubuntu

Installation of Python environment

After the installation of conda environment, repository mirrors should be added following the instruction:
anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

Environment for the bioinformatics should be added to the conda.

### In linux terminal
$ conda create -y --name bioinfo

### Every time you want to do analysis, the environment **bioinfo** should be activated, and software should be installed under the **bioinfo** environment.
$ source activate bioinfo

Every time you want to do analysis, the environment bioinfo should be activated, and software should be installed under the bioinfo environment.

Following softwares should be installed for RNAseq raw-data processing:

$ conda install -c bioconda fastqc trim-galore hisat2 samtools subread

Genomic index download and build

Human and mouse comprehensive gene annotation (GTF) and transcript sequences (FASTA) could be downloaded via the following website:
GENCODE - Home page (gencodegenes.org)

Index could then be built via the following command:

$ hisat2_extract_exons.py genomic_annotation.gtf > genome.exon
$ hisat2_extract_splice_sites.py genomic_annotation.gtf > genome.ss
$ hisat2-build - p 16 --ss genome.ss --exon genome.exon genomic_fasta.fa genomic_annotation
### Building an index with the whole genome requires about 200 GB RAM

Installation of R and packages

R could be downloaded directly from the following website.
R: The R Project for Statistical Computing (r-project.org)
CRAN 镜像使用帮助 — USTC Mirror Help 文档

After the installation, R should be started and the following libraries should be installed.

install.packages("BiocManager", "pacman", "devtools")
### BiocManager is a repository tool for many packages; 
### pacman is a package for easy install and load of other packages;
### devtools is required for the install and use of some packages;

Then, add a ".Rprofile" file in your home directory as follow:

### In linux terminal
$ cd ~/
$ sudo nano .Rprofile
### Add the following commands for quick install and load of R packages:
library(pacman)
options(repos = c(USTC="https://mirrors.ustc.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
### Save (ctrl + O) and quit (ctrl + Q)

The following packages were required for the following analysis step:

### In the R enviroment
> p_load(DESeq2, biomaRt, pheatmap, ggplot2, ggrepel, ggsci, org.Hs.eg.db, org.Mm.eg.db, tidyverse, clusterProfiler, GSVA, GSEA, STRINGdb, igraph, ggraph, GSEABase, msigdbr, limma)
### If errors occured during the installation of these packages, please follow the instructions to install dependencies for linux and/or R.

3. Raw data acquisition

General procedure for acquiring RNAseq raw data

4. Python analysis to get count-matrix of the RNAseq

### Quarlity control step
$ fastqc -t 12 -o ./ your_rawdata_name_1.fq.gz your_rawdata_name_2.fq.gz

### Trimming for adaptors (Not required)
$ trim_galore -q 20 --phred33 --stringency 3 --length 20 -e 0.1 --paired your_rawdata_name_1.fq.gz your_rawdata_name_2.fq.gz

### Alignment step
$ hisat2 -p 12 -x <GRCm39.genome> -1 <sample_id>_R1.fastq.gz -2 <sample_id>_R2.fastq.gz | samtools view -Sb > <sample_id>.bam

### Counting step
$ featureCounts -T 12 -p -t exon -g gene_id -a <gtf.gz> -o <sample_id>.txt <sample_id>.bam

### for Batch running
$ pluma process_batch.sh

### Add the following into process_batch.sh
#!/bin/bash
for i in name_1 _name_2 name_3...
do
  hisat2 -p 12 -x <GRCm39.genome> -1 <sample_id>_R1.fastq.gz -2 <sample_id>_R2.fastq.gz | samtools view -Sb > <sample_id>.bam;
done
files=$(ls *.bam)
featureCounts -T 12 -p -t exon -g gene_id -a <gtf.gz> -o <merged_count>.txt $files
### Save and quit

### Execute the process_batch.sh file as follow in the linux terminal:
$ bash process_batch.sh

5. R process for differential expression analysis

  • Count-Matrix merging from 'count' for each sample
setwd("<working.dir>)
p_load(tidyverse, biomaRt)
count <- read.table(file.choose(), header = T)
count$Geneid <- gsub("\\..*$", "", count$Geneid)
raw_col <- colnames(count)
raw_col <- gsub("Geneid", "ensembl_gene_id", raw_col)
raw_col <- gsub(".bam.gz", "", raw_col)
raw_col <- gsub("\\.", "_", raw_col)
raw_col <- gsub("_bam", "", raw_col)
colnames(count) <- raw_col
count <- count[,-2:-5]
kb <- count$Length / 1000
rpk <- count[,-1:-2] / kb
tpm <- t(t(rpk)/colSums(rpk) * 1e6)
tpm <- round(tpm, 2)
tpm <- cbind(count[,1:2], tpm)
p_load(biomaRt, tidyverse)
if(grepl("ENSG", count[1,1])){
  genometype = "hsapiens_gene_ensembl"} else {
    genometype = "mmusculus_gene_ensembl"} 
    ### only work for human and/or mouse;
mart <- useMart("ensembl", genometype)
gene_name <- getBM(
  attributes = c("ensembl_gene_id", "external_gene_name"), 
  filters = "ensembl_gene_id", 
  values = count$ensembl_gene_id, 
  mart = mart)
write.csv(gene_name, "GENE_INFO.csv", row.names = F)
count <- merge(gene_name[,1:2], count, by="ensembl_gene_id", sort = F)
count <- count[,-3]
tpm <- merge(gene_name[,1:2], tpm, by = "ensembl_gene_id", sort = F)
tpm <- tpm[,-3]
write.csv(count, "COUNT.csv", row.names = F)
write.csv(tpm, "TPM.csv", row.names = F)
count <- count[!duplicated(count$external_gene_name),]
rownames(count) <- count[,2]
count <- count[,-1:-2]
count <- filter_all(count, any_vars(. > 10))
write.csv(count, "COUNT_MATRIX.csv")
rm(list=ls())
  • (NOT REQUIRED) Additional manipulation
### batch effect removal
p_load(tidyverse, sva)
batch <- c(rep(1,3),rep(2,3)...)
  # multiple grouping could also be introduced by the group factors
  # group <- c(rep(1,6),rep(2,3),rep(3,3),rep(4,3),rep(5,3),rep(6,3),rep(7,3))
counts <- read.csv("count_matrix.csv", row.names = 1)
adj_counts <- as.data.frame(ComBat_seq(as.matrix(counts), batch = batch, group = group))
  • DEG analysis
    Filtering count value less than 10 resulted in identical DEG analysis results, "COUNT_MATRIX.csv" is already after filtration.
    An example for the determination of count filtering
#Preload
p_load(DESeq2, ggplot2, pheatmap, ggrepel, tidyverse, ggsci)
mydata <- read.csv("COUNT_MATRIX.csv", row.names=1)
countData <- mydata[, xx:xx] ### Specify the range of data for analysis

#To build DESeq matrix and filter out genes with count < 10
condition <- factor(gsub("_[0-9]$", "", colnames(countData)))
colData <- data.frame(row.names = colnames(countData), condition)
dds <- DESeqDataSetFromMatrix(countData, colData, design=~condition)
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep, ] 

# For paired-test:
condition <- factor(gsub("_[0-9]$", "", colnames(countData)))
subject <- factor(c(1,2,3,1,2,3))
colData <- data.frame(row.names = colnames(countData), condition, subject)
dds <- DESeqDataSetFromMatrix(countData, colData, design = ~subject +condition)
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep, ] 

# Draw PCA analysis result
rld <- rlog(dds, blind=T)
p <- plotPCA(rld)
pcaData <- p$data
median <- pcaData %>% 
  group_by(group) %>% 
  summarize(X1=median(PC1), X2 = median(PC2))
xlab_text <- p$labels$x
ylab_text <- p$labels$y
p1 <- ggplot(pcaData, aes(PC1, PC2, color = group)) + 
  geom_point(size = 3) + 
  geom_text_repel(aes(X1, X2, label = group), data = median) + 
  xlab(xlab_text) + ylab(ylab_text) +
  theme_classic()
p1 + theme(legend.position = "none")

# Draw correlation analysis result
rld_mat <- assay(rld)
rld_cor <- cor(rld_mat)
pheatmap(rld_cor, border = F, cluster_rows = F, cluster_cols = F, angle_col = 45, 
  legend = F) 

# Draw DEG analysis result
dds <- DESeq(dds)
res <- results(dds)
resdata <- as.data.frame(res)
resdata$change = ifelse(resdata$padj < 0.05 & abs(resdata$log2FoldChange) >= 1, 
  ifelse(resdata$log2FoldChange>=1, 'Up', 'Down'), 'Stable')
resdata <- na.omit(resdata)
### resdata_sig <- subset(resdata, change != "Stable")
### resdata_sig <- resdata_sig %>% top_n(10, abs(log2FoldChange))
ggplot(resdata, aes(log2FoldChange, -log(padj, 10), colour = change)) + 
  geom_point(alpha=0.8, size = 3) + 
  scale_color_manual(values=c("blue", "grey","red")) + 
  xlab(expression("log"[2]*"FC")) + ylab(expression("-log"[10]*"FDR")) + 
  geom_vline(xintercept=c(-1,1),lty=4,col="lightgrey",lwd=0.8) + 
  geom_hline(yintercept = -log10(0.05),lty=4,col="lightgrey",lwd=0.8)  +
  ### geom_text_repel(aes(label=rownames(resdata_sig)), data=resdata_sig) +
  theme_classic()
table(resdata$change)

# Save DEG analysis results
resdata <- as.data.frame(results(dds))
write.csv(resdata, file="DESeq2_full_results.csv")
res <- subset(res, padj < 0.05 & (log2FoldChange >1 | log2FoldChange < -1))
resdata <- as.data.frame(res)
write.csv(resdata, file="DESeq2_DEGs_results.csv")

Color patterns usually used for 'ggplot2' and 'pheatmap'


----------cbPalette--------------------------------cbbPalette----------
# The palette with grey:
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", 
  "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# The palette with black:
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", 
  "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# The usually used colors:
color = c("red", "blue", "violet", "orange", "cyan", "brown", "navy", "firebrick3")
  • Correlation and PCA plot
    Alternatively, correlation, PCA, and vocano plots could be draw directly from the dds matrix as follows:
p_load(FactoMineR, corrplot)
expr <- read.csv("tpm_nominated.csv", header=T, row.names=1)
corr <- cor(expr, method='pearson')
corrplot(corr, type='upper', tl.col='black', order='hclust', tl.srt=45, addCoef.col = 'white')
expr <- t(expr)
gene.pca <- PCA(expr, ncp=2, scale.unit=TRUE, graph=FALSE)
plot(gene.pca)
  • Plot the Upset diagram
p_load(UpSetR)
mydata <- read.csv("<DEGs.csv>") 
listInput <- list(group_1 = mydata$group_1, group_2 = mydata$group_2, ...)
result <- upset(fromList(listInput), sets = c("mock"...), 
  keep.order = T, number.angles = 30, point.size = 3.5, 
  line.size = 2, mainbar.y.label = "Intersections", sets.x.label = "DEG numbers", 
  text.scale = c(1.3, 1.3, 1, 1, 2, 1), mb.ratio = c(0.55, 0.45))

6. Geneset annotation or enrichment analysis

Enrichment analysis could be performed directly from the following websites:
Overview: DAVID: Functional Annotation Tools (ncifcrf.gov)
Web GSEA: WEB-based GEne SeT AnaLysis Toolkit
Gene annotation and analysis: Metascape
Results were more user-friendly and easier to be achieved than R did, thus these websites were highly recommended.
Alternatively, the following R scripts could also be used with many variations.
Genesets information are directly downloaded from MSigDB database via the msigdbr packages.
Detailed information is here: GSEA | MSigDB (gsea-msigdb.org)

List of subsets from the msigdbr database

  • GSEA analysis
p_load(tidyverse, GSVA, GSEABase, clusterProfiler, msigdbr, enrichplot, GseaVis)
KEGG_df = msigdbr(species = "Mus musculus", category = "C2", subcategory = "CP:KEGG") %>% 
  dplyr::select(gs_name, gene_symbol)
log2FC_matrix <- read.csv(file.choose()) 
log2FC_matrix <- na.omit(log2FC_matrix)
# The matrix contains external_gene_name and log2FC value
GSEA <- log2FC_matrix$log2FoldChange
names(GSEA) <- log2FC_matrix$X
GSEA <- sort(GSEA, decreasing = T)
GSEA_kegg <- GSEA(GSEA, TERM2GENE = KEGG_df, eps = 1e-10)
dotplotGsea(data = GSEA_kegg,topn = 10, order.by = 'NES', add.seg = T, base_size = 10)
write.csv(GSEA_kegg@result, "GSEA_result.csv")
gseaplot2(GSEA_kegg, geneSetID = 1:3, pvalue_table = TRUE, 
  color = c("#E495A5", "#86B875", "#7DB0DD"))
volcanoGsea(GSEA_kegg)
  • GO and KEGG Enrichment analysis
p_load(org.Hs.eg.db, clusterProfiler, ggplot2)
DEGs_entrezid <- mapIds(x=org.Hs.eg.db, column = "ENTREZID", 
  keys = as.character(mydata$DEGs), keytype = "ENSEMBL")
ALL <- enrichGO(gene=DEGs_entrezid, OrgDb=org.Hs.eg.db, 
  keyType = "ENTREZID", ont = 'ALL', pvalueCutoff = 0.01, 
  pAdjustMethod = "BH", qvalueCutoff = 0.05, readable=T)
barplot(ALL, split="ONTOLOGY", label_format=100) + 
  facet_grid(ONTOLOGY~.,scale="free")
write.table(as.data.frame(ALL), 'GO_enrichment.txt', sep = '\t', row.names = F, quote = F)

my_entrez_id <- mapIds(x=org.Hs.eg.db, column = "ENTREZID", 
  keys = as.character(mydata$down_genes), keytype = "ENSEMBL")
erich.kegg = enrichKEGG(gene = my_entrez_id, organism = "hsa", pAdjustMethod = 'BH', 
  pvalueCutoff = 0.01, qvalueCutoff = 0.05)
dotplot(erich.kegg)
write.table(as.data.frame(erich.kegg), 'KEGG_enrichment.txt', sep = '\t', row.names = F, quote = F)

7. GSVA analysis for analyzing geneset-level activities of multiple samples

count <- read.csv("count_matrix.csv", row.names = 1)
countData <- filter_all(count, any_vars(. > 10))

p_load(tidyverse, GSVA, GSEABase, clusterProfiler, msigdbr, limma, pheatmap, ggplot2, GSEABase, msigdbr, sva)
KEGG_df_all <-  msigdbr(species = "Mus musculus", category = "H") 
KEGG_df <- dplyr::select(KEGG_df_all,gs_name,gs_exact_source,gene_symbol)
kegg_list <- split(KEGG_df$gene_symbol, KEGG_df$gs_name)
GSVA_hall <- gsva(expr = as.matrix(count), gset.idx.list = kegg_list, 
  mx.diff = T, kcdf = "Poisson", parallel.sz = 16)
# kcdf should be set into "Gaussian" for CPM, RPKM, and TPM, while "Poisson" for read counts.
# "BiocParallel" package should be installed first for parallel calculation.
pheatmap(GSVA_hall, border = F, cluster_cols = F)

# "limma" package for the differential analysis of genesets.
list <- c(rep("CK", 3), rep("Treat",3)) %>% factor(., levels = c("CK", "Treat"), ordered = F)
list <- model.matrix(~factor(list)+0)
colnames(list) <- c("CK", "Treat")
df.fit <- lmFit(GSVA, list)
df.matrix <- makeContrasts(Treat - CK , levels = list)
fit <- contrasts.fit(df.fit, df.matrix)
fit <- eBayes(fit)
tempOutput <- topTable(fit,n = Inf, adjust = "fdr")
tempOutput$change <- ifelse(tempOutput$P.Value < 0.05 & abs(tempOutput$logFC) >= 1, 
  ifelse(tempOutput$logFC >= 1, 'Up', 'Down'), 'Stable')
tempOutput <- na.omit(tempOutput)
ggplot(tempOutput, aes(logFC, -log10(P.Value), colour = change)) + 
  geom_point(alpha=0.8, size = 3) + 
  scale_color_manual(values=c("blue","grey","red")) + 
  xlab(expression("log"[2]*"FC")) + ylab(expression("-log"[10]*"FDR")) + 
  geom_vline(xintercept=c(-1,1), lty=4, col="black", lwd=0.8) + 
  geom_hline(yintercept = -log10(0.05), lty=4, col="black", lwd=0.8)  +
  theme(legend.position = "none")
table(tempOutput$change)
tempOutput <- tempOutput[(tempOutput$change != "Stable"),]
write.csv(tempOutput, "GSVA_sig_xxx.csv")

"TCseq" could be used for clustering of GSVA results or "limma" could be used for differential analysis thereafter.

8. PPI analysis and graphing

p_load(tidyverse, clusterProfiler, org.Hs.eg.db, STRINGdb, igraph, ggraph)
string_db <- STRINGdb$new(version="11.5", species = 9606, score_threshold = 400)  
# 9606 for human and 10090 for mouse;
DEGs <- read.csv("DESeq2_results.csv", row.names = 1)
DEGs <- DEGs[(abs(DEGs$log2FoldChange) >= 1.5),]
gene <- rownames(DEGs)
gene <- gene %>% bitr(fromType = "SYMBOL", toType = "ENTREZID", 
  OrgDb = "org.Hs.eg.db", drop = T)
data_mapped <- gene %>% string_db$map(my_data_frame_id_col_names = "ENTREZID", 
  removeUnmappedRows = TRUE)
string_db$plot_network(data_mapped$STRING_id)

data_links <- data_mapped$STRING_id[1:100] %>% string_db$get_interactions()
links <- data_links %>%
  mutate(from = data_mapped[match(from, data_mapped$STRING_id), "SYMBOL"]) %>% 
  mutate(to = data_mapped[match(to, data_mapped$STRING_id), "SYMBOL"]) %>%  
  dplyr::select(from, to , last_col()) %>% 
  dplyr::rename(weight = combined_score)
nodes <- links %>% { data.frame(gene = c(.$from, .$to)) } %>% distinct()
net <- igraph::graph_from_data_frame(d=links,vertices=nodes,directed = F)
igraph::V(net)$deg <- igraph::degree(net) 
igraph::V(net)$size <- igraph::degree(net)/5 
igraph::E(net)$width <- igraph::E(net)$weight/10
ggraph(net,layout = "kk")+
  geom_edge_arc(aes(edge_width=width), color = "red4", show.legend = F)+
  geom_node_point(aes(size=size), color="blue2", alpha=0.7)+
  geom_node_text(aes(filter=deg>5, label=name), size = 5, repel = T)+
  scale_edge_width(range = c(0.2,1))+
  scale_size_continuous(range = c(1,10) )+
  guides(size=F)+
  theme_graph()
# ggraph(net,layout = "stress")+
# ggraph(net,layout = "linear", circular = TRUE)+


links_2 <- links %>% mutate(from_c = count(., from)$n[match(from, count(., from)$from)]) %>%
  mutate(to_c = count(., to)$n[match(to, count(., to)$to)]) %>%
  filter(!(from_c == 1 & to_c == 1)) %>%
  dplyr::select(1,2,3)
nodes_2 <- links_2 %>% { data.frame(gene = c(.$from, .$to)) } %>% distinct()
net_2 <- igraph::graph_from_data_frame(d=links_2,vertices=nodes_2,directed = F)
igraph::V(net_2)$deg <- igraph::degree(net_2)
igraph::V(net_2)$size <- igraph::degree(net_2)/5
igraph::E(net_2)$width <- igraph::E(net_2)$weight/10

ggraph(net_2,layout = "centrality", cent = deg)+
  geom_edge_fan(aes(edge_width=width), color = "lightblue", show.legend = F)+
  geom_node_point(aes(size=size), color="orange", alpha=0.7)+
  geom_node_text(aes(filter=deg>5, label=name), size = 5, repel = T)+
  scale_edge_width(range = c(0.2,1))+
  scale_size_continuous(range = c(1,10) )+
  guides(size=F)+
  theme_graph()

links_2 %>% tidygraph::as_tbl_graph() %>%
  ggraph(layout = "kk")+
  geom_edge_fan(color = "grey")+
  geom_node_point(size=5, color="blue", alpha=0.8)+
  geom_node_text(aes(label=name), repel = T)+
  theme_void()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容