密度聚类算法——DBSCAN

Clustering 聚类

密度聚类——DBSCAN

  前面我们已经介绍了两种聚类算法:k-means和谱聚类。今天,我们来介绍一种基于密度的聚类算法——DBSCAN,它是最经典的密度聚类算法,是很多算法的基础,拥有很多聚类算法不具有的优势。今天,小编就带你理解密度聚类算法DBSCAN的实质。

DBSCAN

基础概念

    作为最经典的密度聚类算法,DBSCAN使用一组关于“邻域”概念的参数来描述样本分布的紧密程度,将具有足够密度的区域划分成簇,且能在有噪声的条件下发现任意形状的簇。在学习具体算法前,我们先定义几个相关的概念:

邻域:对于任意给定样本x和距离ε,x的ε邻域是指到x距离不超过ε的样本的集合;

核心对象:若样本x的ε邻域内至少包含minPts个样本,则x是一个核心对象;

密度直达:若样本b在a的ε邻域内,且a是核心对象,则称样本b由样本x密度直达;

密度可达:对于样本a,b,如果存在样例p1,p2,...,pn,其中,p1=a,pn=b,且序列中每一个样本都与它的前一个样本密度直达,则称样本a与b密度可达;

密度相连:对于样本a和b,若存在样本k使得a与k密度可达,且k与b密度可达,则a与b密度相连。

光看文字是不是绕晕了?下面我们用一个图来简单表示上面的密度关系:

当minPts=3时,虚线圈表示ε邻域,则从图中我们可以观察到:

x1是核心对象;

x2由x1密度直达;

x3由x1密度可达;

x3与x4密度相连。

    为什么要定义这些看上去差不多又容易把人绕晕的概念呢?其实ε邻域使用(ε,minpts)这两个关键的参数来描述邻域样本分布的紧密程度,规定了在一定邻域阈值内样本的个数(这不就是密度嘛)。那有了这些概念,如何根据密度进行聚类呢?

DBSCAN聚类思想

  DBSCAN聚类的原理很简单:由密度可达关系导出最大密度相连的样本集合(聚类)。这样的一个集合中有一个或多个核心对象,如果只有一个核心对象,则簇中其他非核心对象都在这个核心对象的ε邻域内;如果是多个核心对象,那么任意一个核心对象的ε邻域内一定包含另一个核心对象(否则无法密度可达)。这些核心对象以及包含在它ε邻域内的所有样本构成一个类。

  那么,如何找到这样一个样本集合呢?一开始任意选择一个没有被标记的核心对象,找到它的所有密度可达对象,即一个簇,这些核心对象以及它们ε邻域内的点被标记为同一个类;然后再找一个未标记过的核心对象,重复上边的步骤,直到所有核心对象都被标记为止。

算法的思想很简单,但是我们必须考虑一些细节问题才能产出一个好的聚类结果:

    首先对于一些不存在任何核心对象邻域内的点,再DBSCAN中我们将其标记为离群点(异常);

    第二个是距离度量,如欧式距离,在我们要确定ε邻域内的点时,必须要计算样本点到所有点之间的距离,对于样本数较少的场景,还可以应付,如果数据量特别大,一般采用KD树或者球树来快速搜索最近邻,不熟悉这两种方法的同学可以找相关文献看看,这里不再赘述;

    第三个问题是如果存在样本到两个核心对象的距离都小于ε,但这两个核心对象不属于同一个类,那么该样本属于哪一个类呢?一般DBSCAN采用先来后到的方法,样本将被标记成先聚成的类。

DBSCAN算法流程

DBSCAN算法小结

      之前我们学过了kmeans算法,用户需要给出聚类的个数k,然而我们往往对k的大小无法确定。DBSCAN算法最大的优势就是无需给定聚类个数k,且能够发现任意形状的聚类,且在聚类过程中能自动识别出离群点。那么,我们在什么时候使用DBSCAN算法来聚类呢?一般来说,如果数据集比较稠密且形状非凸,用密度聚类的方法效果要好一些。

DBSCAN算法优点:

1. 不需要事先指定聚类个数,且可以发现任意形状的聚类;

2. 对异常点不敏感,在聚类过程中能自动识别出异常点;

3. 聚类结果不依赖于节点的遍历顺序;

DBSCAN缺点:

1. 对于密度不均匀,聚类间分布差异大的数据集,聚类质量变差;

2. 样本集较大时,算法收敛时间较长;

3. 调参较复杂,要同时考虑两个参数;

小结:

    基于密度的聚类算法是广为使用的算法,特别是对于任意形状聚类以及存在异常点的场景。上面我们也提到了DBSCAN算法的缺点,但是其实很多研究者已经在DBSCAN的基础上做出了改进,实现了多密度的聚类,针对海量数据的场景,提出了micro-cluster的结构来表征距离近的一小部分点,减少存储压力和计算压力...还有很多先进的密度聚类算法及其应用,相信看完这篇文章再去读相关的论文会比较轻松。

扫码关注

获取有趣的算法知识

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容