2020-03-04 Python Pandas读取修改excel操作pd.read_excel()

image.png

image.png
>>> pd.read_excel('1.xlsx', sheet_name='Sheet2')
     名字   等级 属性1   属性2  天赋
0  四九幻曦  100  自然  None  21
1  圣甲狂战  100  战斗  None   0
2  时空界皇  100   光    次元  27

我们在这里使用了pd.read_excel()函数来读取excel,来看一下read_excel()这个方法的API,这里只截选一部分经常使用的参数:

pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None)

io:很明显, 是excel文件的路径+名字字符串

(有中文的话python2的老铁需要使用decode()来解码成unicode字符串)
例如:

>>> pd.read_excel('例子'.decode('utf-8))

sheet_name:返回指定的sheet
如果将sheet_name指定为None,则返回全表
如果需要返回多个表, 可以将sheet_name指定为一个列表, 例如['sheet1', 'sheet2']
可以根据sheet的名字字符串或索引来值指定所要选取的sheet

>>> # 如:
>>> pd.read_excel('1.xlsx', sheet_name=0)
>>> pd.read_excel('1.xlsx', sheet_name='Sheet1')
>>> # 返回的是相同的 DataFrame

name:如果没有表头, 可用此参数传入列表做表头
header:指定数据表的表头,默认值为0, 即将第一行作为表头
index_col:用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。一般可以设定index_col=False指的是pandas不适用第一列作为行索引。

usecols:读取指定的列, 也可以通过名字或索引值

>>> # 如:
>>> pd.read_excel('1.xlsx', sheet_name=1, usecols=['等级', '属性1'])
>>> pd.read_excel('1.xlsx', sheet_name=1, usecols=[1,2])
>>> # 返回的是相同的 DataFrame

直到某一天泰格尔升了一级, 可以这样改一下, 当然用.iloc.loc对象都可以

>>> # 读取文件
>>> data = pd.read_excel("1.xlsx", sheet_name="Sheet1")

>>> # 找到 等级 这一列,再在这一列中进行比较
>>> data['等级'][data['名字'] == '泰格尔'] += 1
>>> print(data)
>>> data
     名字   等级 属性1   属性2  天赋
0  艾欧里娅  100  自然     冰  29
1   泰格尔   81   电    战斗  16
2  布鲁克克  100   水  None  28

保存

data.to_excel('1.xlsx', sheet_name='Sheet1', index=False, header=True)

index:默认为True, 是否加行索引

image.png

左为False, 右为True

header:默认为True, 是否加列标

image.png

左为False, 右为True

io, sheet_name参数用法同函数pd.read_excel()

如果我们多捕捉几只或者多加几种属性怎么办呢?这里给出参考:

新增列数据:
data['列名称'] = [值1, 值2, ......]

>>> data['特性'] = ['瞬杀', 'None', '炎火']
>>> data
     名字   等级 属性1   属性2  天赋    特性
0  艾欧里娅  100  自然     冰  29    瞬杀
1   泰格尔   80   电    战斗  16  None
2  布鲁克克  100   水  None  28    炎火

新增行数据,这里行的num为excel中自动给行加的id数值
data.loc[行的num] = [值1, 值2, ...], (注意与.iloc的区别)

>>> data.loc[3] = ['小火猴', 1, '火', 'None', 31, 'None']
>>> data
     名字   等级 属性1   属性2  天赋    特性
0  艾欧里娅  100  自然     冰  29    瞬杀
1   泰格尔   80   电    战斗  16  None
2  布鲁克克  100   水  None  28    炎火
3   小火猴    1   火  None  31  None

说完了增加一行或一列,那怎样删除一行或一列呢?可以使用.drop()函数

>>> # 删除列, 需要指定axis为1,当删除行时,axis为0
>>> data = data.drop('属性1', axis=1) # 删除`属性1`列
>>> data
     名字   等级   属性2  天赋    特性
0  艾欧里娅  100     冰  29    瞬杀
1   泰格尔   80    战斗  16  None
2  布鲁克克  100  None  28    炎火
3   小火猴    1  None  31  None

>>> # 删除第3,4行,这里下表以0开始,并且标题行不算在类, axis用法同上
>>> data = data.drop([2, 3], axis=0)
>>> data
     名字   等级 属性2  天赋    特性
0  艾欧里娅  100   冰  29    瞬杀
1   泰格尔   80  战斗  16  None

>>> # 保存
>>> data.to_excel('2.xlsx', sheet_name='Sheet1', index=False, header=True)

大家具体可以参考官网提供的API:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html#pandas.read_excel

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351