注:源自于Android
一、代理模式
代理模式是java23种设计模式常用的一种设计模式。
代理模式是客户端不直接调用实际对象,而是通过调用代理对象来间接调用使用实际对象。
为什么使用代理模式来间接调用使用实际对象,而不是直接使用实际对象呢?这里主要有两方面的考量:
- 出于安全、封装性的考量,不想直接使用实际对象
-
使用实际对象比较麻烦
现实生活中律师、房屋中介其实就是活生生的代理模式
我们来看下代理模式的关系图:
java中代理模式分为静态代理和动态代理的不同实现
1、静态代理的实现:
public interface Subject {
void test();
}
public class RealSubject implements Subject {
@Override
public void test() {
System.out.println("this is RealSubject test");
}
}
public class ProxySubject implements Subject {
Subject mSubject;
public ProxySubject(Subject pSubject){
mSubject = pSubject;
}
@Override
public void test() {
if(mSubject != null){
mSubject.test();
}
}
}
public class Client {
public static void main(String[] args){
RealSubject realSubject = new RealSubject();
ProxySubject proxySubject = new ProxySubject(realSubject);
proxySubject.test();
}
}
通过上面的代码我们可以看出静态代理的优缺点:
- 优点:代理类可以接受一个已经实现了Subject接口的对象,任何实现了Subject接口的对象都可以通过代理类进行代理,实现了通用型
- 缺点:当接口增删改方法,那么代理类已得要跟着修改;代理类的每个接口对象对应一个委托对象,如果委托对象很多,代理类就会变得异常臃肿
2、动态代理
动态代理有别用静态代理,它是通过要代理的类,动态的生成代理类。这样可以避免静态代理中代理类接口过多的问题。
动态代理的实现方式是借助java.lang.Reflect.Proxy进行反射实现的,其步骤如下:
a、编写一个委托类接口,对应的静态代理的Subject接口
b、编写一个委托类接口的实现类,对应的是静态代理的RealSubject
c、创建动态代理类方法调用处理程序,实现InvocationHandler接口,并重写invoke方法
d、在测试类中生成动态代理对象
定义委托对象接口:
public interface Subject {
void test();
}
委托对象接口实现类:
public class RealSubject implements Subject {
@Override
public void test() {
System.out.print("this is dynamic RealSubject test");
}
}
动态代理类方法调用处理程序:
public class DynamicProxy implements InvocationHandler {
Object mObj;
public DynamicProxy(Object pObj){
mObj = pObj;
}
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
Object result = null;
System.out.println("this is Dynamic proxy invode");
if(mObj != null){
result = method.invoke(mObj, args);
}
return result;
}
}
使用动态代理:
public class Client {
public static void main(String[] args){
RealSubject realSubject = new RealSubject();
DynamicProxy proxy = new DynamicProxy(realSubject);
Subject subject = (Subject) Proxy.newProxyInstance(
realSubject.getClass().getClassLoader(),
realSubject.getClass().getInterfaces(),
proxy
);
subject.test();
}
}
二、动态代理原理
通过上面动态代理的使用,它看似并没有代理类,那么它是什么进入DynamicProxy的invoke方法实现实际委托对象方法的调用呢?
下面我们通过源码一步一步解析揭开它什么的面纱:
动态代理使用了Proxy.newProxyInstance方法动态创建代理类,我们看下newProxyInstance源码:
/**
@params loader 用于从动态生成的class字节流中加载创建代理类
@params interfaces 委托对象实现的接口列表
@params h 代理类方法调用处理器
@return 返回动态创建的代理类
*/
public static Object newProxyInstance(ClassLoader loader,
Class<?>[] interfaces,
InvocationHandler h)
throws IllegalArgumentException
{
//动态代理类方法调用处理程序即这里的h不能为空
Objects.requireNonNull(h);
//委托对象的接口列表
final Class<?>[] intfs = interfaces.clone();
//android中移除了安全相关的校验
// Android-removed: SecurityManager calls
/*
final SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
}
*/
/*
* Look up or generate the designated proxy class.
*/
//动态生成class文件字节流,然后通过loader加载此字节流创建代理类class
Class<?> cl = getProxyClass0(loader, intfs);
/*
* Invoke its constructor with the designated invocation handler.
*/
try {
// Android-removed: SecurityManager / permission checks.
/*
if (sm != null) {
checkNewProxyPermission(Reflection.getCallerClass(), cl);
}
*/
//获取代理类的类构造对象
final Constructor<?> cons = cl.getConstructor(constructorParams);
final InvocationHandler ih = h;
//如果class对象不可访问,则修改为可访问
if (!Modifier.isPublic(cl.getModifiers())) {
// BEGIN Android-changed: Excluded AccessController.doPrivileged call.
/*
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
cons.setAccessible(true);
return null;
}
});
*/
cons.setAccessible(true);
// END Android-removed: Excluded AccessController.doPrivileged call.
}
// 通过类构造器创建代理实现类并返回
return cons.newInstance(new Object[]{h});
} catch (IllegalAccessException|InstantiationException e) {
throw new InternalError(e.toString(), e);
} catch (InvocationTargetException e) {
Throwable t = e.getCause();
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new InternalError(t.toString(), t);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString(), e);
}
}
newProxyInstance动态创建代理类的步骤是:
- 校验代理类方法调用处理程序h不能为空
- 动态生成代理类class文件格式字节流
- 通过loader加载创建代表代理类的class对象
- 根据代理类的构造器创建代理类
- 返回动态创建生成的代理类
怎么生成代理类class文件格式字节流的呢?
我们先看下getProxyClass0方法:
private static Class<?> getProxyClass0(ClassLoader loader,
Class<?>... interfaces) {
if (interfaces.length > 65535) {
throw new IllegalArgumentException("interface limit exceeded");
}
// If the proxy class defined by the given loader implementing
// the given interfaces exists, this will simply return the cached copy;
// otherwise, it will create the proxy class via the ProxyClassFactory
return proxyClassCache.get(loader, interfaces);
}
通过上面的代码告诉我们委托对象能实现的接口数量不能超过65535,就是Short类型的最大值
我们再看proxyCache.get的实现,其中proxyCache是WeakCache的实现对象:
//WeakCache.java
/**
@params key 此处是类加载器loader
@params parameter 此处是代理类接口列表
*/
public V get(K key, P parameter) {
//此处要求代理类接口不能为空
Objects.requireNonNull(parameter);
expungeStaleEntries();
//生成CacheKey对象
Object cacheKey = CacheKey.valueOf(key, refQueue);
// lazily install the 2nd level valuesMap for the particular cacheKey
//根据cachekey获取键值对valuesMap, valuesMap的key是接口列表的包装类,value是动态生成代理类的包装类
ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
if (valuesMap == null) {
ConcurrentMap<Object, Supplier<V>> oldValuesMap
= map.putIfAbsent(cacheKey,
valuesMap = new ConcurrentHashMap<>());
if (oldValuesMap != null) {
valuesMap = oldValuesMap;
}
}
// create subKey and retrieve the possible Supplier<V> stored by that
// subKey from valuesMap
//根据代理类接口生成的key
Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
//动态生成代理类的包装类
Supplier<V> supplier = valuesMap.get(subKey);
//生成动态代理类的工厂类
Factory factory = null;
while (true) {
//如果动态代理类包装类supplier不为空,则使用supplier 中的工厂类factory加载动态生成的class文件格式的代理类的字节流
if (supplier != null) {
// supplier might be a Factory or a CacheValue<V> instance
//此处是factory加载动态生成的class文件格式的代理类的字节流的实现
V value = supplier.get();
if (value != null) {
//此处返回动态生成的代理类
return value;
}
}
// else no supplier in cache
// or a supplier that returned null (could be a cleared CacheValue
// or a Factory that wasn't successful in installing the CacheValue)
// lazily construct a Factory
//如果动态生成代理类的工厂类为空,则创建新的工厂类
if (factory == null) {
factory = new Factory(key, parameter, subKey, valuesMap);
}
if (supplier == null) {
//工厂类的包装类为空,则创建新的包装类supplier
supplier = valuesMap.putIfAbsent(subKey, factory);
if (supplier == null) {
// successfully installed Factory
supplier = factory;
}
// else retry with winning supplier
} else {
//工厂类的包装类不为空,则替换包装类中的工作累
if (valuesMap.replace(subKey, supplier, factory)) {
// successfully replaced
// cleared CacheEntry / unsuccessful Factory
// with our Factory
supplier = factory;
} else {
// retry with current supplier
supplier = valuesMap.get(subKey);
}
}
}
}
由上面的代码,大概知道通过map来存储动态生成的代理类,其中key是接口的包装类,value是动态代理类的包装类。
- key的生成是通过subKeyFactory,subKeyFactory是KeyFactory的实现类,其实现很简单,只是对代理类接口进行包装:
private static final class KeyFactory
implements BiFunction<ClassLoader, Class<?>[], Object>
{
@Override
public Object apply(ClassLoader classLoader, Class<?>[] interfaces) {
switch (interfaces.length) {
case 1: return new Key1(interfaces[0]); // the most frequent
case 2: return new Key2(interfaces[0], interfaces[1]);
case 0: return key0;
default: return new KeyX(interfaces);
}
}
}
private static final class Key1 extends WeakReference<Class<?>> {
private final int hash;
Key1(Class<?> intf) {
super(intf);
this.hash = intf.hashCode();
}
@Override
public int hashCode() {
return hash;
}
@Override
public boolean equals(Object obj) {
Class<?> intf;
return this == obj ||
obj != null &&
obj.getClass() == Key1.class &&
(intf = get()) != null &&
intf == ((Key1) obj).get();
}
}
其他key1、keyx不展开说明
- value是生成动态代理类的包装类,此包装类是实现了Supplier接口的Factory类,通过Factory的get方法动态生成代理类:
@Override
public synchronized V get() { // serialize access
// re-check
//从map中获取已经生成的动态代理类的包装类
Supplier<V> supplier = valuesMap.get(subKey);
if (supplier != this) {
// something changed while we were waiting:
// might be that we were replaced by a CacheValue
// or were removed because of failure ->
// return null to signal WeakCache.get() to retry
// the loop
return null;
}
// else still us (supplier == this)
// create new value
V value = null;
try {
//通过valueFactory的apply方法生成动态代理类
value = Objects.requireNonNull(valueFactory.apply(key, parameter));
} finally {
if (value == null) { // remove us on failure
valuesMap.remove(subKey, this);
}
}
// the only path to reach here is with non-null value
assert value != null;
// wrap value with CacheValue (WeakReference)
CacheValue<V> cacheValue = new CacheValue<>(value);
// try replacing us with CacheValue (this should always succeed)
if (valuesMap.replace(subKey, this, cacheValue)) {
// put also in reverseMap
reverseMap.put(cacheValue, Boolean.TRUE);
} else {
throw new AssertionError("Should not reach here");
}
// successfully replaced us with new CacheValue -> return the value
// wrapped by it
return value;
}
这里核心的实现是valueFactory的apply方法,valueFactory是ProxyClassFactory的实现类,我们来看下ProxyClassFactory的apply方法,看其是怎么实现生成动态代理类的:
public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {
Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
//获取代理类接口的class对象,并校验是否是接口,如果不是则抛出错误
for (Class<?> intf : interfaces) {
/*
* Verify that the class loader resolves the name of this
* interface to the same Class object.
*/
Class<?> interfaceClass = null;
try {
interfaceClass = Class.forName(intf.getName(), false, loader);
} catch (ClassNotFoundException e) {
}
if (interfaceClass != intf) {
throw new IllegalArgumentException(
intf + " is not visible from class loader");
}
/*
* Verify that the Class object actually represents an
* interface.
*/
if (!interfaceClass.isInterface()) {
throw new IllegalArgumentException(
interfaceClass.getName() + " is not an interface");
}
/*
* Verify that this interface is not a duplicate.
*/
if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
}
//动态代理类的包名
String proxyPkg = null; // package to define proxy class in
//动态代理类的访问权限
int accessFlags = Modifier.PUBLIC | Modifier.FINAL;
/*
* Record the package of a non-public proxy interface so that the
* proxy class will be defined in the same package. Verify that
* all non-public proxy interfaces are in the same package.
*/
for (Class<?> intf : interfaces) {
//根据代理类接口生成包名和访问权限
int flags = intf.getModifiers();
if (!Modifier.isPublic(flags)) {
accessFlags = Modifier.FINAL;
String name = intf.getName();
int n = name.lastIndexOf('.');
String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
if (proxyPkg == null) {
proxyPkg = pkg;
} else if (!pkg.equals(proxyPkg)) {
throw new IllegalArgumentException(
"non-public interfaces from different packages");
}
}
}
if (proxyPkg == null) {
// if no non-public proxy interfaces, use the default package.
proxyPkg = "";
}
{
// Android-changed: Generate the proxy directly instead of calling
// through to ProxyGenerator.
//获取代理类接口的方法列表,并进行排序和返回类型校验
List<Method> methods = getMethods(interfaces);
Collections.sort(methods, ORDER_BY_SIGNATURE_AND_SUBTYPE);
validateReturnTypes(methods);
//获取方法类别的异常列表
List<Class<?>[]> exceptions = deduplicateAndGetExceptions(methods);
//方法列表转为方法数组
Method[] methodsArray = methods.toArray(new Method[methods.size()]);
//异常列表转为异常数组
Class<?>[][] exceptionsArray = exceptions.toArray(new Class<?>[exceptions.size()][]);
/*
* Choose a name for the proxy class to generate.
*/
//生成代理类唯一名称
long num = nextUniqueNumber.getAndIncrement();
String proxyName = proxyPkg + proxyClassNamePrefix + num;
//根据类名、接口、类加载器、方法列表、异常列表,按照class文件格式先生成字节流,再生成动态代理类
return generateProxy(proxyName, interfaces, loader, methodsArray,
exceptionsArray);
}
}
//native方法,其实现原理是根据类名、接口、类加载器、方法列表、异常列表,按照class文件格式先生成字节流,再生成动态代理类
@FastNative
private static native Class<?> generateProxy(String name, Class<?>[] interfaces,
ClassLoader loader, Method[] methods,
Class<?>[][] exceptions);
按照这样的流程,我们可以总结动态代理的原理如下:
1、根据代理类接口先得到代理类的类全限名、方法列表、异常列表
2、根据步骤1中的类全限名、方法列表、异常列表、接口列表生成class文件格式的字节流,其中方法的实现会最终调用InvoationHanlder的invoke方法
3、使用类加载器加载步骤2中的字节流,创建生成动态代理类对象
4、使用步骤3中创建生成的代理类对象