Custom Accumulator in Spark 2.1
Accumulator can sum or count number in spark tasks over all nodes, and then return the final result. For example, LongAccumulator.
But when I want to accumulate value by custom way, it can be implemented by extends AccumulatorV2 in spark 2.1.
Below, a MapLongAccumulator is implemented to count the numbers of several values seperately.
import java.util
import java.util.Collections
import org.apache.spark.util.AccumulatorV2
import scala.collection.JavaConversions._
class MapLongAccumulator[T] extends AccumulatorV2[T, java.util.Map[T, java.lang.Long]] {
private val _map: java.util.Map[T, java.lang.Long] = Collections.synchronizedMap(new util.HashMap[T, java.lang.Long]())
override def isZero: Boolean = _map.isEmpty
override def copyAndReset(): MapLongAccumulator[T] = new MapLongAccumulator
override def copy(): MapLongAccumulator[T] = {
val newAcc = new MapLongAccumulator[T]
_map.synchronized {
newAcc._map.putAll(_map)
}
newAcc
}
override def reset(): Unit = _map.clear()
override def add(v: T): Unit = _map.synchronized {
val old = _map.put(v, 1l)
if (old != null) {
_map.put(v, 1 + old)
}
}
override def merge(other: AccumulatorV2[T, java.util.Map[T, java.lang.Long]]): Unit = other match {
case o: MapLongAccumulator[T] => {
for ((k,v) <- o.value) {
val old = _map.put(k, v)
if(old != null){
_map.put(k, old.longValue() + v)
}
}
}
case _ => throw new UnsupportedOperationException(
s"Cannot merge ${this.getClass.getName} with ${other.getClass.getName}")
}
override def value: java.util.Map[T, java.lang.Long] = _map.synchronized {
java.util.Collections.unmodifiableMap(new util.HashMap[T, java.lang.Long](_map))
}
def setValue(newValue: java.util.Map[T, java.lang.Long]): Unit = {
_map.clear()
_map.putAll(newValue)
}
}
Use case:
val accumulator = new MapLongAccumulator[String]()
sc.register(accumulator, "CustomAccumulator")
someRdd.map(a => {
...
val convertResult = convert(a)
convertResultAccumulator.add(convertResult.toString)
...
}).repartition(1).saveAsTextFile(outputPath)
System.out.println(accumulator.value) // the several convertResults will be counted seperately, and then get the output value.
AccumulatorV2 is new accumulator
class since spark 2.0.0.
public abstract class AccumulatorV2<IN,OUT>
extends Object
implements scala.Serializable
The base class for accumulators, that can accumulate inputs of type IN, and produce output of type OUT.
OUT should be a type that can be read atomically (e.g., Int, Long), or thread-safely (e.g., synchronized collections) because it will be read from other threads.
Methods of AccumulatorV2:
merge
method doesn't need thread-safe, it is called only in one thread when task completion.(handleTaskCompletion
in DAGScheduler
)
org.apache.spark.scheduler.DAGScheduler.scala
/**
* Responds to a task finishing. This is called inside the event loop so it assumes that it can
* modify the scheduler's internal state. Use taskEnded() to post a task end event from outside.
*/
private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
val task = event.task
val taskId = event.taskInfo.id
val stageId = task.stageId
val taskType = Utils.getFormattedClassName(task)
outputCommitCoordinator.taskCompleted(
stageId,
task.partitionId,
event.taskInfo.attemptNumber, // this is a task attempt number
event.reason)
// Reconstruct task metrics. Note: this may be null if the task has failed.
val taskMetrics: TaskMetrics =
if (event.accumUpdates.nonEmpty) {
try {
TaskMetrics.fromAccumulators(event.accumUpdates)
} catch {
case NonFatal(e) =>
logError(s"Error when attempting to reconstruct metrics for task $taskId", e)
null
}
} else {
null
}
......
val stage = stageIdToStage(task.stageId)
event.reason match {
case Success =>
stage.pendingPartitions -= task.partitionId
task match {
case rt: ResultTask[_, _] =>
// Cast to ResultStage here because it's part of the ResultTask
// TODO Refactor this out to a function that accepts a ResultStage
val resultStage = stage.asInstanceOf[ResultStage]
resultStage.activeJob match {
case Some(job) =>
if (!job.finished(rt.outputId)) {
updateAccumulators(event)
......
case smt: ShuffleMapTask =>
val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
updateAccumulators(event)
val status = event.result.asInstanceOf[MapStatus]
val execId = status.location.executorId
logDebug("ShuffleMapTask finished on " + execId)
if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
} else {
shuffleStage.addOutputLoc(smt.partitionId, status)
}
......
case exceptionFailure: ExceptionFailure =>
// Tasks failed with exceptions might still have accumulator updates.
updateAccumulators(event)
......
}
/**
* Merge local values from a task into the corresponding accumulators previously registered
* here on the driver.
*
* Although accumulators themselves are not thread-safe, this method is called only from one
* thread, the one that runs the scheduling loop. This means we only handle one task
* completion event at a time so we don't need to worry about locking the accumulators.
* This still doesn't stop the caller from updating the accumulator outside the scheduler,
* but that's not our problem since there's nothing we can do about that.
*/
private def updateAccumulators(event: CompletionEvent): Unit = {
val task = event.task
val stage = stageIdToStage(task.stageId)
try {
event.accumUpdates.foreach { updates =>
val id = updates.id
// Find the corresponding accumulator on the driver and update it
val acc: AccumulatorV2[Any, Any] = AccumulatorContext.get(id) match {
case Some(accum) => accum.asInstanceOf[AccumulatorV2[Any, Any]]
case None =>
throw new SparkException(s"attempted to access non-existent accumulator $id")
}
acc.merge(updates.asInstanceOf[AccumulatorV2[Any, Any]])
// To avoid UI cruft, ignore cases where value wasn't updated
if (acc.name.isDefined && !updates.isZero) {
stage.latestInfo.accumulables(id) = acc.toInfo(None, Some(acc.value))
event.taskInfo.accumulables += acc.toInfo(Some(updates.value), Some(acc.value))
}
}
} catch {
case NonFatal(e) =>
logError(s"Failed to update accumulators for task ${task.partitionId}", e)
}
}
org.apache.spark.executor.TaskMetrics.scala
/**
* Construct a [[TaskMetrics]] object from a list of accumulator updates, called on driver only.
*/
def fromAccumulators(accums: Seq[AccumulatorV2[_, _]]): TaskMetrics = {
val tm = new TaskMetrics
val (internalAccums, externalAccums) =
accums.partition(a => a.name.isDefined && tm.nameToAccums.contains(a.name.get))
internalAccums.foreach { acc =>
val tmAcc = tm.nameToAccums(acc.name.get).asInstanceOf[AccumulatorV2[Any, Any]]
tmAcc.metadata = acc.metadata
tmAcc.merge(acc.asInstanceOf[AccumulatorV2[Any, Any]])
}
tm.externalAccums ++= externalAccums
tm
}