CART ( Classification and regression tree)分类回归树建立回归模型

分类与回归树(CART)方法是一种机器学习方法,具有很好的数据拟合性、较高的R2值和较低的RMSE,是一种很好的探索性方法,其目的是确定分类与预测规则。CART以其高精度和高性能在不同的工程领域得到了广泛的应用。具体介绍就不在赘述,可以参考百度(有很多),这里直接上代码。本实例以我的研究为例。主要工具是采用R语言包进行结果的输出。

主要步骤:

1 首先主要采用的是R语言中的Cubist包,输入代码前要先进行安装,install.packet('Cubist'),安装成功后可直接运行。

2 数据准备:

这一步相对比较简单,将因变量与自变量按列排列即可,该实例中自变量既可以是数值形式也可以是文本形式,如下数据格式:


image.png

3 复制代码,注意修改自己的路径。下述代码将原始数据分为test和train两部分,结合自身情况可以进一步输出。

library(Cubist)
library(caret)
setwd("I:\\01-data\\Global\\flux\\FLUXNET2015\\04Result\\RV3_年值03_合并所有年份\\")
data = read.csv("I:\\01-data\\Global\\flux\\FLUXNET2015\\04Result\\RV3_年值03_合并所有年份\\NPP_yearly.csv",header = T)

set.seed(1) # 设置种子,保证生成的随机数不发生变化
inTrain <- sample(1:nrow(data), floor(.8*nrow(data)))

#===========================================自变量
# 训练数据集(前13列)
train_pred <- data[ inTrain, 6:11]
# 随机样本剩余的数据(前13列)
test_pred  <- data[-inTrain, 6:11]
#==========================================因变量(目标变量)
train_resp <- data$NPP[ inTrain]
test_resp  <- data$NPP[-inTrain]

#======这一步是为了确定参数,选择怎杨的committees和neighbors值模拟的RMSE可以达到最小
grid <- expand.grid(committees = c(1,10,20,50,100),
                    neighbors = c(0,1,3,5,7,9))
set.seed(1)
boston_tuned <- train(
  x = train_pred,
  y = train_resp,
  method = "cubist",
  tuneGrid = grid,
  trControl = trainControl(method = "cv")
  #trControl = trainControl(method = "repeatedcv",number = 10,repeats = 10) 
  )
#------------------trainControl()--------------------------------------
# method表示进行重采样方法 cv:cross validation,number表示 k折交叉验证,repeats表示重复交叉验证的次数
boston_tuned
ggplot(boston_tuned) +
  theme(legend.position = "top")

# ================cubistControl()======================
# unbiased:无偏估计,rules:表示规则的最大上限,
# extrapolation:表示最大值最小值外推的上限百分比,比如范围0-100,那训练外推到100+10%,0-10%
# sample:表示80%的样本进行训练,剩下的20%测试,
# seed:随机种子,sample.int(x,size): 表示在1:x之间产生size个随机数,size为整数
# label:表示目标变量

# cubistControl(unbiased = FALSE, rules = 100, extrapolation = 5)

# =================cubist()===========================
# X :表示自变量组成的子集,Y:表示目标变量,
# committees:The committee option can be used to control number of model trees,
# 可以根据上述boston_tuned进行最优选择,control = cubistControl() :训练规则
model_tree = cubist(x = train_pred, y = train_resp) 

# ==============summary()=============================
# summary() 表示生产的规则
rule = summary(model_tree)
# sink("test.log", type=c("output", "message"))  # 将控制台输出内容保存,即将生成的规则保存用于后续应用

# ===============predict()============================
# predict() 表示对验证数据的预测,用于检验模型的精度
# models 为上述的cubist结果,validation_data[,2:5]为验证数据集,
# neighbors:表示使用多少实例来纠正基于规则的预测? 可以根据上述boston_tuned进行最优选择
model_tree_pred <- predict(model_tree, test_pred)
yanzheng = data.frame(test_resp,model_tree_pred)
sqrt = sqrt(mean((model_tree_pred - test_resp)^2))
cor = cor(model_tree_pred, test_resp)^2
print(cor)
write.csv(yanzheng,"I:\\01-data\\Global\\flux\\FLUXNET2015\\04Result\\RV3_年值03_合并所有年份\\validation_yearly_test.csv",quote =F,row.names = F)

#==============dotplot()==============================
# 输出的是 每一个回归方程的系数以及截距(常数项)在每一个规则上的值
# dotplot(model1,what = "coefs",col = "blue",lwd = 10)

4 结果解读

image.png

这是代码生成的模型规则集(rule sets)committees空值模型的数量
针对上述生成的规则,采用python进行栅格结果的确定

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353