恒源云(GPUSHARE)_Byte-Pair Encoding算法超详细讲解

文章来源 | 恒源云社区

原文地址 | BPE 算法详解

原文作者 | Mathor


Byte Pair Encoding

在NLP模型中,输入通常是一个句子,例如"I went to New York last week.",一句话中包含很多单词(token)。传统的做法是将这些单词以空格进行分隔,例如['i', 'went', 'to', 'New', 'York', 'last', 'week']。然而这种做法存在很多问题,例如模型无法通过old, older, oldest之间的关系学到smart, smarter, smartest之间的关系。如果我们能使用将一个token分成多个subtokens,上面的问题就能很好的解决。本文将详述目前比较常用的subtokens算法——BPE(Byte-Pair Encoding)

现在性能比较好一些的NLP模型,例如GPT、BERT、RoBERTa等,在数据预处理的时候都会有WordPiece的过程,其主要的实现方式就是BPE(Byte-Pair Encoding)。具体来说,例如['loved', 'loving', 'loves']这三个单词。其实本身的语义都是"爱"的意思,但是如果我们以词为单位,那它们就算不一样的词,在英语中不同后缀的词非常的多,就会使得词表变的很大,训练速度变慢,训练的效果也不是太好。BPE算法通过训练,能够把上面的3个单词拆分成["lov","ed","ing","es"]几部分,这样可以把词的本身的意思和时态分开,有效的减少了词表的数量。算法流程如下:

  1. 设定最大subwords个数V
  2. 将所有单词拆分为单个字符,并在最后添加一个停止符</w>,同时标记出该单词出现的次数。例如,"low"这个单词出现了5次,那么它将会被处理为{'l o w </w>': 5}
  3. 统计每一个连续字节对的出现频率,选择最高频者合并成新的subword
  4. 重复第3步直到达到第1步设定的subwords词表大小或下一个最高频的字节对出现频率为1

例如

{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}

出现最频繁的字节对是** es **,共出现了6+3=9次,因此将它们合并

{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w es t </w>': 6, 'w i d es t </w>': 3}

出现最频繁的字节对是** est**,共出现了6+3=9次,因此将它们合并

{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est </w>': 6, 'w i d est </w>': 3}

出现最频繁的字节对是** est</w> **,共出现了6+3=9次,因此将它们合并

{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}

出现最频繁的字节对是** lo**,共出现了5+2=7次,因此将它们合并

{'lo w </w>': 5, 'lo w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}

出现最频繁的字节对是** low **,共出现了5+2=7次,因此将它们合并

{'low </w>': 5, 'low e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}

…继续迭代直到达到预设的subwords词表大小或下一个最高频的字节对出现频率为1。这样我们就得到了更加合适的词表,这个词表可能会出现一些不是单词的组合,但是其本身有意义的一种形式

停止符</w>的意义在于表示subword是词后缀。举例来说:st不加</w>可以出现在词首,如st ar;加了</w>表明改字词位于词尾,如wide st</w>,二者意义截然不同

BPE实现

import re, collections

def get_vocab(filename):
    vocab = collections.defaultdict(int)
    with open(filename, 'r', encoding='utf-8') as fhand:
        for line in fhand:
            words = line.strip().split()
            for word in words:
                vocab[' '.join(list(word)) + ' </w>'] += 1
    return vocab

def get_stats(vocab):
    pairs = collections.defaultdict(int)
    for word, freq in vocab.items():
        symbols = word.split()
        for i in range(len(symbols)-1):
            pairs[symbols[i],symbols[i+1]] += freq
    return pairs

def merge_vocab(pair, v_in):
    v_out = {}
    bigram = re.escape(' '.join(pair))
    p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
    for word in v_in:
        w_out = p.sub(''.join(pair), word)
        v_out[w_out] = v_in[word]
    return v_out

def get_tokens(vocab):
    tokens = collections.defaultdict(int)
    for word, freq in vocab.items():
        word_tokens = word.split()
        for token in word_tokens:
            tokens[token] += freq
    return tokens

vocab = {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}

# Get free book from Gutenberg
# wget http://www.gutenberg.org/cache/epub/16457/pg16457.txt
# vocab = get_vocab('pg16457.txt')

print('==========')
print('Tokens Before BPE')
tokens = get_tokens(vocab)
print('Tokens: {}'.format(tokens))
print('Number of tokens: {}'.format(len(tokens)))
print('==========')

num_merges = 5
for i in range(num_merges):
    pairs = get_stats(vocab)
    if not pairs:
        break
    best = max(pairs, key=pairs.get)
    vocab = merge_vocab(best, vocab)
    print('Iter: {}'.format(i))
    print('Best pair: {}'.format(best))
    tokens = get_tokens(vocab)
    print('Tokens: {}'.format(tokens))
    print('Number of tokens: {}'.format(len(tokens)))
    print('==========')

输出如下

==========
Tokens Before BPE
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 17, 'r': 2, 'n': 6, 's': 9, 't': 9, 'i': 3, 'd': 3})
Number of tokens: 11
==========
Iter: 0
Best pair: ('e', 's')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 8, 'r': 2, 'n': 6, 'es': 9, 't': 9, 'i': 3, 'd': 3})
Number of tokens: 11
==========
Iter: 1
Best pair: ('es', 't')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 8, 'r': 2, 'n': 6, 'est': 9, 'i': 3, 'd': 3})
Number of tokens: 10
==========
Iter: 2
Best pair: ('est', '</w>')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 10
==========
Iter: 3
Best pair: ('l', 'o')
Tokens: defaultdict(<class 'int'>, {'lo': 7, 'w': 16, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 9
==========
Iter: 4
Best pair: ('lo', 'w')
Tokens: defaultdict(<class 'int'>, {'low': 7, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'w': 9, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 9
==========

编码和解码

编码
在之前的算法中,我们已经得到了subword的词表,对该词表按照字符个数由多到少排序。编码时,对于每个单词,遍历排好序的子词词表寻找是否有token是当前单词的子字符串,如果有,则该token是表示单词的tokens之一

我们从最长的token迭代到最短的token,尝试将每个单词中的子字符串替换为token。 最终,我们将迭代所有tokens,并将所有子字符串替换为tokens。 如果仍然有子字符串没被替换但所有token都已迭代完毕,则将剩余的子词替换为特殊token,如<unk>

例如

# 给定单词序列
["the</w>", "highest</w>", "mountain</w>"]

# 排好序的subword表
# 长度 6         5           4        4         4       4          2
["errrr</w>", "tain</w>", "moun", "est</w>", "high", "the</w>", "a</w>"]

# 迭代结果
"the</w>" -> ["the</w>"]
"highest</w>" -> ["high", "est</w>"]
"mountain</w>" -> ["moun", "tain</w>"]

解码
将所有的tokens拼在一起即可,例如

# 编码序列
["the</w>", "high", "est</w>", "moun", "tain</w>"]

# 解码序列
"the</w> highest</w> mountain</w>"

编码和解码实现

import re, collections

def get_vocab(filename):
    vocab = collections.defaultdict(int)
    with open(filename, 'r', encoding='utf-8') as fhand:
        for line in fhand:
            words = line.strip().split()
            for word in words:
                vocab[' '.join(list(word)) + ' </w>'] += 1

    return vocab

def get_stats(vocab):
    pairs = collections.defaultdict(int)
    for word, freq in vocab.items():
        symbols = word.split()
        for i in range(len(symbols)-1):
            pairs[symbols[i],symbols[i+1]] += freq
    return pairs

def merge_vocab(pair, v_in):
    v_out = {}
    bigram = re.escape(' '.join(pair))
    p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
    for word in v_in:
        w_out = p.sub(''.join(pair), word)
        v_out[w_out] = v_in[word]
    return v_out

def get_tokens_from_vocab(vocab):
    tokens_frequencies = collections.defaultdict(int)
    vocab_tokenization = {}
    for word, freq in vocab.items():
        word_tokens = word.split()
        for token in word_tokens:
            tokens_frequencies[token] += freq
        vocab_tokenization[''.join(word_tokens)] = word_tokens
    return tokens_frequencies, vocab_tokenization

def measure_token_length(token):
    if token[-4:] == '</w>':
        return len(token[:-4]) + 1
    else:
        return len(token)

def tokenize_word(string, sorted_tokens, unknown_token='</u>'):
    
    if string == '':
        return []
    if sorted_tokens == []:
        return [unknown_token]

    string_tokens = []
    for i in range(len(sorted_tokens)):
        token = sorted_tokens[i]
        token_reg = re.escape(token.replace('.', '[.]'))

        matched_positions = [(m.start(0), m.end(0)) for m in re.finditer(token_reg, string)]
        if len(matched_positions) == 0:
            continue
        substring_end_positions = [matched_position[0] for matched_position in matched_positions]

        substring_start_position = 0
        for substring_end_position in substring_end_positions:
            substring = string[substring_start_position:substring_end_position]
            string_tokens += tokenize_word(string=substring, sorted_tokens=sorted_tokens[i+1:], unknown_token=unknown_token)
            string_tokens += [token]
            substring_start_position = substring_end_position + len(token)
        remaining_substring = string[substring_start_position:]
        string_tokens += tokenize_word(string=remaining_substring, sorted_tokens=sorted_tokens[i+1:], unknown_token=unknown_token)
        break
    return string_tokens

# vocab = {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}

vocab = get_vocab('pg16457.txt')

print('==========')
print('Tokens Before BPE')
tokens_frequencies, vocab_tokenization = get_tokens_from_vocab(vocab)
print('All tokens: {}'.format(tokens_frequencies.keys()))
print('Number of tokens: {}'.format(len(tokens_frequencies.keys())))
print('==========')

num_merges = 10000
for i in range(num_merges):
    pairs = get_stats(vocab)
    if not pairs:
        break
    best = max(pairs, key=pairs.get)
    vocab = merge_vocab(best, vocab)
    print('Iter: {}'.format(i))
    print('Best pair: {}'.format(best))
    tokens_frequencies, vocab_tokenization = get_tokens_from_vocab(vocab)
    print('All tokens: {}'.format(tokens_frequencies.keys()))
    print('Number of tokens: {}'.format(len(tokens_frequencies.keys())))
    print('==========')

# Let's check how tokenization will be for a known word
word_given_known = 'mountains</w>'
word_given_unknown = 'Ilikeeatingapples!</w>'

sorted_tokens_tuple = sorted(tokens_frequencies.items(), key=lambda item: (measure_token_length(item[0]), item[1]), reverse=True)
sorted_tokens = [token for (token, freq) in sorted_tokens_tuple]

print(sorted_tokens)

word_given = word_given_known 

print('Tokenizing word: {}...'.format(word_given))
if word_given in vocab_tokenization:
    print('Tokenization of the known word:')
    print(vocab_tokenization[word_given])
    print('Tokenization treating the known word as unknown:')
    print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))
else:
    print('Tokenizating of the unknown word:')
    print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))

word_given = word_given_unknown 

print('Tokenizing word: {}...'.format(word_given))
if word_given in vocab_tokenization:
    print('Tokenization of the known word:')
    print(vocab_tokenization[word_given])
    print('Tokenization treating the known word as unknown:')
    print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))
else:
    print('Tokenizating of the unknown word:')
    print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))

输出如下

Tokenizing word: mountains</w>...
Tokenization of the known word:
['mountains</w>']
Tokenization treating the known word as unknown:
['mountains</w>']
Tokenizing word: Ilikeeatingapples!</w>...
Tokenizating of the unknown word:
['I', 'like', 'ea', 'ting', 'app', 'l', 'es!</w>']
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容