scikit-learn--cross-validated(交叉验证)

在scikit-learn中,可以使用 train_test_split 快速地将数据集分为训练数据和测试数据。当我们评估不同的设置(超参数)时,在测试集上仍然存在着过拟合风险,因为参数要不断调整到模型最佳为止。在这个过程中,关于测试集的知识就会“泄漏”到模型中,评估指标也不再泛化。为了解决这个问题,数据集的一部分被作为“验证集”,在训练集上训练数据,然后在验证集上验证,直到模型看起来成功了,再在测试集上最终评价。
然而,把数据集分为三部分,我们用来学习模型的训练数据将减少,并且模型结果依赖划分数据集的特定随机数。
cross-validation (CV) 过程用来解决这个问题。测试数据集仍然用来做最终的评价,但是验证集不再需要。k折 CV方法,把训练数据划分为k 个小数据集,k-1 折数据用来训练,余下的数据用来评估。
k折 CV方法采用递归计算中的平均值作为模型评价,这种方法会导致较大的计算量,但是没有浪费数据。

计算CV指标

CV 最简单的方法是使用 cross_val_score函数。

from sklearn.model_selection import cross_val_score
clf = svm.SVC(kernel='linear', C=1)
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
scores        

每次CV迭代的得分默认使用模型的得分计算计算,也可以通过 scoring 参数修改,例如 scoring='f1_macro'。
当参数 cv 是整数时,使用 KFold 或 StratifiedKFold 策略,也可以使用其他划分策略。
cross_val_predit 对于每个输入,返回这个输入在测试集中的预测值。只有在cv策略把输入的所有元素都分配到测试集一次的情况下,才能使用。

分层数据的交叉验证(Cross-validation iterators with stratification based on class labels.)

对于不平衡分类问题,推荐使用 StratifiedKFold 和StratifiedShuffleSplit 确保在训练和测试集中保持近似的频率。

分组数据的交叉验证

GroupKFold
LeaveOneGroupOut
LeavePGroupsOut
GroupShuffleSplit

时间序列数据的交叉验证

TimeSeriesSplit


来源:http://scikit-learn.org/stable/modules/cross_validation.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容