1什么是Hadoop:
Hadoop最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案。
——分布式文件系统(GFS),可用于处理海量网页的存储
——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目.
狭义上来说,hadoop就是单独指代hadoop这个软件,
HDFS :分布式文件系统
MapReduce : 分布式计算系统
Yarn:分布式样集群资源管理
广义上来说,hadoop指代大数据的一个生态圈,包括很多其他的软件
2、hadoop的历史版本和发行版公司
2.1 Hadoop历史版本
1.x版本系列:hadoop版本当中的第二代开源版本,主要修复0.x版本的一些bug等
2.x版本系列:架构产生重大变化,引入了yarn平台等许多新特性
3.x版本系列: 加入多namenoode新特性
2.2 Hadoop三大发行版公司
免费开源版本apache:
Apache Hadoop
优点:拥有全世界的开源贡献者,代码更新迭代版本比较快,
缺点:版本的升级,版本的维护,版本的兼容性,版本的补丁都可能考虑不太周到,
apache所有软件的下载地址(包括各种历史版本):
Index of /dist
免费开源版本hortonWorks:
hortonworks主要是雅虎主导Hadoop开发的副总裁,带领二十几个核心成员成立Hortonworks,核心产品软件HDP(ambari),HDF免费开源,并且提供一整套的web管理界面,供我们可以通过web界面管理我们的集群状态,web管理界面软件HDF网址
3、hadoop的架构模型
1.x的版本架构模型介绍
文件系统核心模块:
NameNode:集群当中的主节点,管理元数据(文件的大小,文件的位置,文件的权限),主要用于管理集群当中的各种数据
secondaryNameNode:主要能用于hadoop当中元数据信息的辅助管理
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
数据计算核心模块:
JobTracker:接收用户的计算请求任务,并分配任务给从节点
TaskTracker:负责执行主节点JobTracker分配的任务
2.x的版本架构模型介绍
第一种:NameNode与ResourceManager单节点架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据
secondaryNameNode:主要能用于hadoop当中元数据信息的辅助管理
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
数据计算核心模块:
ResourceManager:接收用户的计算请求任务,并负责集群的资源分配
NodeManager:负责执行主节点APPmaster分配的任务
第二种:NameNode单节点与ResourceManager高可用架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据
secondaryNameNode:主要能用于hadoop当中元数据信息的辅助管理
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
数据计算核心模块:
ResourceManager:接收用户的计算请求任务,并负责集群的资源分配,以及计算任务的划分,通过zookeeper实现ResourceManager的高可用
NodeManager:负责执行主节点ResourceManager分配的任务
第三种:NameNode高可用与ResourceManager单节点架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据,其中nameNode可以有两个,形成高可用状态
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
JournalNode:文件系统元数据信息管理
数