MAP2B.1.5的安装与使用

转自:https://github.com/sunzhengCDNM/MAP2B

Installation


System requirements


Dependencies

All scripts in MAP2B are programmed by Perl and Python, and execution of MAP2B is recommended in a conda environment. This program could work properly in the Unix systems, or Mac OSX, as all required packages can be appropreiately download and installed.

Memory usage

> 14G RAM is required to run this pipeline.


Download the pipeline


Clone the latest version from GitHub (recommended):

git clone https://github.com/sunzhengCDNM/MAP2B/

cd MAP2B

This makes it easy to update the software in the future usinggit pullas bugs are fixed and features are added. Alternatively, directly download the whole GitHub repo without installing GitHub:

wget https://github.com/sunzhengCDNM/MAP2B/archive/master.zip

unzip master.zip

cd MAP2B-master


Install MAP2B in a conda environment


Conda installation

Miniconda provides the conda environment and package manager, and is the recommended way to install MAP2B.Create a conda environment for MAP2B pipeline:

After installing Miniconda and opening a new terminal, make sure you’re running the latest version of conda:

conda update conda

Once you have conda installed, create a conda environment with the yml fileconfig/MAP2B-20230420-conda.yml.

conda env create -n MAP2B.1.5 --file config/MAP2B-20230420-conda.yml

Activate the MAP2B conda environment by running the following command:

conda activate MAP2B.1.5 or source activate MAP2B.1.5

Make sure the conda environment of MAP2B has been activated by running the above command before you run MAP2B everytime.

The workflow begins by checking the database's existence, and if it is not found, the corresponding database will be downloaded automatically to the software installation path. This download process may take some time, but it ensures that the necessary databases are readily available for the workflow. Alternatively, you can also download the GTDB database and RefSeq database independently using the following commands:

for GTDB database

python3 scripts/DownloadDB.py -l config/GTDB.CjePI.database.list -d database/GTDB

for RefSeq database

python3 scripts/DownloadDB.py -l config/RefSeq.CjePI.database.list -d database/RefSeq

Now, everything is ready for MAP2B :), Let's get started.


Using MAP2B


Quick start

MAP2B is a highly automatic pipeline, and only a few parameters are required for the pipeline.

We prepared a real pair-end sequencing data of a MOCK community:

cd example

mkdir -p data/

wget -t 0 -O data/shotgun_MSA-1002_1.fq.gz https://figshare.com/ndownloader/files/38346149/shotgun_MSA-1002_1.fq.gz

wget -t 0 -O data/shotgun_MSA-1002_2.fq.gz https://figshare.com/ndownloader/files/38346155/shotgun_MSA-1002_2.fq.gz

After downloading the sequencing data, we can finally run MAP2B:

python3 ../bin/MAP2B.py -i data.list

Indata.list you can learn how to prepare your input data, both single-end and paired-end data can be used as input.

sample1 <tab> shotgun1_left.fastq(.gz) <tab> shotgun1_right.fastq(.gz)

sample2 <tab> shotgun2.fastq(.gz)

sample3 ...


Parameters


The main program is bin/MAP2B.py in this repo. You can check out the usage by printing the help information via python3 bin/MAP2B.py -h.

usage: MAP2B.py [-h] -i INPUT  [-o OUTPUT]  [-d DATABASE]  [-p PROCESSES]  [-g GSCORE]

optional arguments:

  -h, --help    show this help message and exit

  -i INPUT      The filepath of the sample list. Each line includes an input sample ID and the file path of corresponding DNA sequence data where each field should be separated by <tab>. The line in this file that begins with # will be ignored.

                  sample <tab> shotgun.1.fq(.gz) (<tab> shotgun.2.fq.gz)

  -o OUTPUT    Output directory, default ./MAP2B_result

  -s {GTDB,RefSeq}  Data source, choose from GTDB or RefSeq, default GTDB

  -d DATABASE  Database path for MAP2B pipeline, MAP2B_path/database

  -p PROCESSES  Number of processes, note that more threads may require more memory, default 1

  -g GSCORE    Using G score as the threshold for species identification, -g 5 is recommended. Enabling G score will automatically shutdown false positive recognition model, default none

author: Liu Jiang, Zheng Sun

mail: jiang.liu@oebiotech.com, spzsu@channing.harvard.edu

last update: 2023/04/20 20:03:47

version:  1.5

If you are dealing with low-biomass samples, we recommend using the-g 3or-g 5parameters to keep as many species as possible. Although false positive detection is still a challenge for low-biomass samples, please keep in mind that the G-score ranking is highly relevant to the likelihood that a species is a true positive. Then, you can set up a threshold for G-score based on your understanding.


lishasha配置refseq数据库、GTDB数据库(CjePI酶的数据库);lishasha1配置GTDB数据库

config/RF_none_0238.v2.pkl 为作者已经训练好的假阳性过滤模型

安装路径
/usr/lishasha/biosoft/MAP2B-master

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355