Introduction to Coordination in Multi-Agent Reinforcement Learning

It is a fact that we live in a world involving interaction with others, including both cooperation and competition. Thus, it is attractive to apply reinforcement learning into multi-agent systems.

Multi-agent System

Framework

Because the problem of math formula editor, I will give a picture showing the definition from the perspective of markov decision process.

Multi-agent Reinforcement Learning

Advantages

There are many advantages of multiple agents acting in the systems.

  1. <strong>Explore Efficiently</strong>. There is a trade-off between exploration and exploitation in single agent reinforcement learning. How powerful it will be if there are multiple agents together to explore and communicate with each other, upon which the efficiency of sampling will be dramatically improved. For a recent research result, please see [1].

  2. <strong>Robust Securely</strong>. It is nor rare that some machines suddenly break down in reality, resulting in collapse of the systems. Thus, we need spare machines to avoid unexpected accidents. Thus, multi-agent reinforcement learning comes.

  3. <strong>Transfer and Lifelong Learning</strong>. By teaching and imitating, new agents can learn more faster than learning primitively.

  4. <strong>Cooperation and Competition</strong>. Some Tasks directly need us to cooperate to accomplish, like playing soccer, playing combat games and so on. By teamwork, it can tackle complicated environment. In addition, when it comes to the conflict of self-interest, we need to think about how to achieve best reward. Interesting phenomenons includes Nash Equilibrium.

Problems

We have talked about lots of advantages of multi-agent reinforcement learning. Now, what's the disadvantages or problems in multi-agent reinforcement learning?

  1. <strong>Huge State and Action Space</strong>. It is no doubt that the space of discrete state and action will grow exponentially with the number of agents, not to mention that the state abstraction and representation will be more tough.

  2. <strong>Partially Observation</strong>. Considering that the range single agent can perceive is small from the perspective of whole systems, there is problem of partial observation. Maybe agents need to communicate and then get a deal about the complete state information. If we think further, how to design the mechanism of communication channel among agents is also a trouble. For recent research results, please see [2] [3].

  3. <strong>Instability in Learning</strong>. Because the transition model is determined by all agents, the quality of policy singe agent has learned is affected by other agent's policies. Think when single agent do the same action again, only to find that the next state and reward, it will be confused and do not know how to learn. Under this constitution, the process of learning may be stuck in oscillation.

  4. <strong>Coordination and Cooperation</strong>. In the following picture, agents need to coordinate to escape obstacle and keep formation. That means agent 1 needs to know what's action agent 2 will choose in order to achieve best payoff. Vice Versa. It is impossible to complete such task by only choosing individual actions regardless of other's actions. It will be more complicated when agents need to coordinate with a series of actions.

Coordination

Reference

[1] Maria and Benjamin. Coordinated Exploration in Concurrent Reinforcement Learning. ICML 2018.

[2] Jakob, Yannis, Nando and Shimon. Learning to Communicate with Deep Multi-Agent Reinforcement Learning. NIPS 2016.

[3] Sainbayar, Arthur and Rob. Learning Multiagent Communication with Backpropagation. NIPS 2016.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351