1:环境及其工具
labelimg,python=3.6,创建虚拟环境,不易污染其他环境
新的环境下,在View视图目录下,选中auto-save-model,Advanced Model。导入路径,选中YOLO格式,如果是重复使用的环境,在新的文件夹创建新的标注,则需重新初始化labelimg,它在以上参数设置下会默认保存路径为上次所用。标注信息为txt保存格式,每一行记录一个标注对象,并由5个元素构成(object class{从0开始递增},x_center/image width,y_center/image_height,width/image_width,height/image_height)归一化(normalized:0-1)
normalize.png
这里标注的文件夹有两个,如下,目标生成images和labels
前面两个文件夹为标注的文件夹.png
标注的文件夹.png
txt内容.png
images/train.png
labels/train.png
拆分代码如下:
# -*- coding: utf-8 -*-
import os, random, shutil
import numpy as np
import json
import shutil
def find_dir_path(path, keyword_name, dir_list):
files = os.listdir(path)
for file_name in files:
file_path = os.path.join(path, file_name)
if os.path.isdir(file_path) and keyword_name not in file_path:
find_dir_path(file_path, keyword_name, dir_list)
elif os.path.isdir(file_path) and keyword_name in file_path:
dir_list.append(file_path)
all_result_path = []
src_path ='C:/Users/eadhaw/Desktop/0125/'
label_save_path = 'C:/Users/eadhaw/Desktop/0125/labels/val/'
image_save_path = 'C:/Users/eadhaw/Desktop/0125/images/val/'
label_save_path_after = 'C:/Users/eadhaw/Desktop/0125/labels/train/'
image_save_path_after = 'C:/Users/eadhaw/Desktop/0125/images/train/'
find_dir_path(src_path, 'bird', all_result_path) # 找出所有带着关键词(_json)的所有目标文件夹
print(all_result_path)
img_list = []
temp = []
for dir_path in all_result_path:
FileNameList = os.listdir(dir_path)
print(dir_path)
# print(FileNameList)
for i in range(len(FileNameList)):
if(os.path.splitext(FileNameList[i])[1] == ".jpg"):
temp = FileNameList[i][:-4]
img_list.append(temp)
# print(img_list)
filenumber=len(img_list)
# print(filenumber)
# print(img_list)
### 该部分为拆分val后剩下的,复制到新的文件,不能和拆分val的一起运行
for res in img_list:
res_jpg = res + ".jpg"
res_txt = res + ".txt"
shutil.copy(dir_path + "/" + res_jpg, image_save_path_after + res_jpg)
shutil.copy(dir_path + "/" + res_txt, label_save_path_after + res_txt)
### 该部分为拆分数据集得到val
rate=0.2 #rate=想取图片数量/文件夹下面所有图片数量
picknumber=int(filenumber*rate) #想取图片数量(整数)
sample = random.sample(img_list, picknumber) #在图片名list中随机选取
print (sample)
for name in sample:
jpg_name = name + ".jpg"
txt_name = name + ".txt"
print(jpg_name)
print(txt_name)
shutil.move(dir_path + "/" + jpg_name, image_save_path + jpg_name)
shutil.move(dir_path + "/" + txt_name, label_save_path + txt_name)
img_list = [] # 一个文件夹读完,重新初始化,该步为两部分都需的
最终的文件夹构成可仿照官方的样例
最终文件夹构成官方样例.png