Kafka,Mq和Redis作为消息队列使用时的差异有哪些?

KAFKA      

       使用kafa作为ETL数据通道,通过kafka配套的connect和schemaRegisty来方便快速实现异构数据源的相互转换和存储,通过connect插件生产和消费数据,通过schemaRegisty转换异构数据(可以在几乎所有你知道的数据源之间相互转换),并且数据可以重复被消费(可以通过配置指定数据存储时长)。kafka的开发团队围绕着kafka开发了一整套自成体系的生态圈(confluent platform)。

                     Building a Scalable ETL Pipeline with Kafka Connect In 30 Minutes


优点:

可扩展。Kafka集群可以透明的扩展,增加新的服务器进集群。

高性能。Kafka性能远超过传统的ActiveMQ、RabbitMQ等,Kafka支持Batch操作。

容错性。Kafka每个Partition数据会复制到几台服务器,当某个Broker失效时,Zookeeper将通知生产者和消费者从而使用其他的Broker。

缺点:

重复消息。Kafka保证每条消息至少送达一次,虽然几率很小,但一条消息可能被送达多次。

消息乱序。Kafka某一个固定的Partition内部的消息是保证有序的,如果一个Topic有多个Partition,partition之间的消息送达不保证有序。

复杂性。Kafka需要Zookeeper的支持,Topic一般需要人工创建,部署和维护比一般MQ成本更高。

MQ

消息队列中间件还有很多种,列举几个:

RocketMq,是阿里在充分reviewkafka代码后,开发的metaQ。在不断更新,修补以后,阿里把metaQ3.0更名为rocket,并且rocket是java写的易于维护。

RabbitMQ,支持对消息的可靠的传递,支持事务,不支持批量的操作;基于存储的可靠性的要求存储可以采用内存或者硬盘。

REDIS

       Redis 的有序集合用来做队列还是不错的,用来实现做简单的任务队列,性能不错,也有持久化(rdb/aof) 但是发布、消费等的确认需要自己实现,所以redis得使用还是建议把它当内存数据库来吧。

Kafka

kafka是个日志处理缓冲组件,主要在大数据信息处理中使用。和传统的消息队列相比简化了队列结构和功能,以文件流形式处理存储(持久化)消息(主要是日志)。

日志信息通常数据量巨大,处理组件一般会处理不过来,所以有了缓冲层kafka。kafka支持巨大的日志吞吐量。为了防止数据丢失,其消息被消费后不会直接丢弃,要多存储一段时间,等超过设置的时间阈值才会丢弃。这是mq和redis所不具备的。

主要特点如下:

巨型存储量: 支持TB甚至PB级别数据。

高吞吐,高IO:一般配置的服务器就可实现单机每秒100K条以上的消息传输。

消息分区,分布式消费:能保证消息顺序传输。 支持离线数据处理(hadoop集群)和实时数据处理。

横向扩展:支持在线水平扩展,以支持更大数据处理能力。

redis

redis是一个高性能的、原子操作的内存键值对nosql。支持高速访问,可用做消息队列的存储,但是不具备消息队列的任何功能和逻辑,要做为消息队列来使用的话,队列功能和逻辑要通过上层应用来自己实现。

MQ,消息队列

我们以RabbitMQ为例来做介绍。它是用Erlang语言开发的开源消息队列,支持多种协议包括AMQP,XMPP, SMTP, STOMP,适合于企业级的开发。

MQ支持Broker构架,消息发送给客户端时需要在中心队列排队。对路由,负载均衡或者数据持久化都有很好的支持。

其他更多消息队列

还有ActiveMq,ZeroMq等,功能上大同小异。

有专门测试的结果表明,并发吞吐TPS比较,ZeroMq 最好,RabbitMq 次之, ActiveMq 最差。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容

  • 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下: 以时间复杂度为O...
    高广超阅读 12,826评论 8 167
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,637评论 18 139
  • 姓名:周小蓬 16019110037 转载自:http://blog.csdn.net/YChenFeng/art...
    aeytifiw阅读 34,715评论 13 425
  • 当时,正是想放弃。 当时已经不想要治愈, 心想就这样吧,别想什么,堕落也好,糜烂也行。已无所谓。 耳边传来一阵笑。...
    夏日蔷薇_07ba阅读 263评论 0 0
  • 感言:回答16年的疑问——有过之而无不及 入夏以来,蚊虫颇多,深受其害。虫多惊吓,蚊多疼痒。 初始...
    江冉阅读 297评论 0 2