第三周:统计学之几种常见的数据分布

【理论】概率分布

基本概念:

随机变量;古典概率;条件概率;离散变量;连续变量;期望值

离散变量概率分布

二项分布;伯努利分布;泊松分布

连续变量概率分布

均匀分布;正态分布;指数分布;伽玛分布;偏态分布;贝塔分布;威布尔分布;卡方分布;F分布

一、基本概念

随机变量:

随机变量(random variable)表示随机试验各种结果的实值单值函数。简单地说,随机变量是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。

古典概率:

古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。

因为古典事件的结果数目已知,且每种结果对应的发生概率相等。例如扔骰子,不管如何扔,出现某个点数的概率等于1/6

条件概率:

条件概率是指事件A在事件B发生的条件下发生的概率。条件概率表示为:P(A|B),读作“A在B发生的条件下发生的概率”。若只有两个事件A,B,那么
image.png

变量

离散变量

连续变量

期望值

期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。

二、离散变量概率分布

二项分布

二项分布是由伯努利提出的概念,指的是重复n次独立的伯努利试验,发生的结果只有两个。

特点:

1.每次试验只有两种可能得结果:“成功”与“失败”,两个结果只会出现一个;

2.每次试验前,如果“成功”的概率是p,那么“失败”的概率是(1-p);

3.每次试验相互独立,每次试验结果不受其他各次试验结果的影响

伯努利分布

伯努利分布是二项分布在n=1时的特例.

伯努利分布又称为两点分布, 需要引入伯努利实验.

伯努利试验是只有两种结果的单次随机试验,

进行一次伯努利试验, 成功(X=1)概率为p(0<=p<=1), 失败(X=0)的概率1-p, 则称随机变量X服从伯努利分布

泊松分布

泊松概率分布是在连续时间或空间单位上发生随机事件次数的概率。通俗解释就是基于过去某个随机事件在某段时间或某个空间内发生的平均次数,预测该随机事件在未来同样长的时间或同样大的空间内发生n次的概率。

应用:经常被用于销售较低的商品库存控制,特别是价格昂贵、需求量不大的商品

连续性变量概率分布

指数分布:

指数分布描述的事两次随机事件发生的时间间隔的概率分布情况,这里的时间间隔指的是一次随机事件发生到下一次随机事件再发生的时间间隔。

指数分布与泊松分布正好互补

均匀分布

均匀概率分布是古典概率分布的连续形式,是指随机事件的可能结果是连续型数据变量,所有的连续型数据结果所对应的概率相等。

概率密度函数如下:

image.png

则称X在区间(a,b)上服从均匀分布. 记为X~U(a,b)

正态分布

正态概率分布是所有概率分布中最重要的形式,它能够表示被测事物处于稳定状态的原因。正态分布曲线酷似古代的大钟,曲线被穿过均值的垂线分成完全相等的两半。

曲线的总面积为1,代表100%的概率,其中50%位于均值垂线的左侧,另外50%位于均值垂线的右侧。

普通的正态分布概率密度公式:

image.png

当出现均值=0, 标准差=1, 标准正态分布时:

image.png

正态分布中还具有特殊的性质:经验法则(6西格玛法则)

68.3% 的数据会分布在均值± 1个标准差范围内;

95.4% 的数据会分布在均值± 2个标准差范围内;

99.7% 的数据会分布在均值± 3 个标准差范围内.

卡方分布

卡方分布是概率统计里常用的一种概率分布,也是统计推断里应用最广泛的概率分布之一,在假设检验与置信区间的计算中经常能见到卡方分布的身影。

卡方分布能用于从样本方差到总体方差的推断性分析,甚至还能用于非参数检验,被称为卡方检验

beta分布

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布,也称Β分布,是指一组定义在(0,1) 区间的连续概率分布。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容

  • 随机变量是根据偶然性取值的变量。我们在谈到随机变量时,通常是以“概率分布”的形式来描述他们。也即:随机变量落在每一...
    小狸投资阅读 5,337评论 1 7
  • 概率分布用以表达随机变量取值的概率规律,根据随机变量所属类型的不同,概率分布取不同的表现形式,主要分为离散变量概率...
    饼人阅读 8,248评论 0 1
  • 看了几篇统计学资料:恍然间不知道概率分布[二项分布] 与抽样分布[t 分布] 差别。 大家知道,统计学分为描...
    caokai001阅读 1,234评论 0 1
  • 嗯嗯,夜幕降临,我静静地躺在我那给予我幸福的床上,看着那“死神小学生”——名侦探柯南。 突然,我爸门也不敲地走了进...
    冯敏琪阅读 200评论 0 1
  • 人在无端微笑时,不是百无聊赖,就是痛苦难当。——王小波<革命时期的爱情> 今天去拔了一颗智齿,哎,拔得过程才几分钟...
    007妈咪阅读 101评论 0 0