判别多元函数连续,可微,可偏导?掌握这些套路反例,答得快准稳

本章框架图如图:

首先从一道选择题引入本文话题:

一、多元函数微分学的基本概念部分

有关偏导数存在,多元函数连续,可微,偏导数连续的命题在考试中经常涉及,多以选择题形式考查。由于许多考生不理解该章节各概念之间的关系,以及没有总结出一套应对这类选择题的方法而常常丢分。许多考生不会严谨地讨论多元函数的连续性、可偏导、偏导数是否存在,是否可微等?其实这部分的题都是有很强的章法和固定的套路来求解的。

偏导数的概念、可微定义、全微分定义及可微的充分、必要条件,可微连续偏导数连续偏导数存在的之间关系的相关结论、如何检验一个多元函数的全微分是否存在的思路见下图(请忽略笔记字丑)

三大反例总结如下

二、多元函数偏导数与全微分部分

主要包括5个方面(1)初等函数的偏导数和全微分;(2)求抽象函数的复合函数的偏导数;(3)由方程组所确定的隐函数的偏导数和全微分;(4)含抽象函数的方程所确定的隐函数的偏导数和全微分;(5)由方程组所确定的隐函数的偏导数。主要方法是直接求导法,链式求导法,等式两边同时取微分。复习时应该注意两点:一是此考点复杂、容易出错,要求一定要做一定量的题目,每道题从头到尾做下来,不要因为繁杂而放弃;二是求高阶偏导数时,要做到不漏不重.(笔记就不放了,重在练习)

三、多元函数的极值与最值部分

本考点是这几年的重要考点,几乎都是大题,分值高,请重视!

对实际问题,若根据问题的性质,已知函数 f (x ,y )在区域D内必能取到最大(小)值,而函数在D内驻点唯一,则该驻点处的函数值即为所求。

条件极值中如何构造拉格朗日函数?

其他未尽知识请参看自己的辅导书,作者水平有限,读者思维无限,如有细节错误请见谅,若有好的想法,欢迎评论区留言!

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 1. 基本概念 1.1 点和点集之间的关系 任意一点 与任意一个点集 之间必有以下三种关系中的一种:(1) 内...
    _诉说阅读 10,207评论 0 1
  • 考试形式和试卷结构一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、...
    幻无名阅读 4,140评论 0 3
  • 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考...
    Saudade_lh阅读 4,736评论 0 0
  • 2017年考研数学一大纲原文 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考...
    SheBang_阅读 3,833评论 0 7
  • 本章涉及知识点:1、无条件极值2、Hessian矩阵3、有条件极值4、数学分析角度5、几何角度6、知识点1:牛顿迭...
    PrivateEye_zzy阅读 13,768评论 0 7