深度解析单例模式,反射和序列化之后的单例模式

对 volatile 变量的写操作,不允许和它之前的读写操作打乱顺序;
对 volatile 变量的读操作,不允许和它之后的读写乱序。

public class Single {
private static volatile Single s= null;  
private Single(){}//私有构造方法,避免外部创建实例
public static Single getInstance() {  
    Single st = s;  // 在这里创建临时变量
    if (st== null) {
          synchronized (Single.class) {//静态同步函数的锁是(类.class)
                st= s;
                if (st== null) {
                      s=st= new Single();  
                }
            }
     }
      return st;  // 注意这里返回的是临时变量
}

这里为什么需要再定义一个临时变量st?通过前面的对 volatile 关键字作用解释可知,访问 volatile 变量,需要保证一些执行顺序,所以的开销比较大。这里定义一个临时变量,在 s 不为空的时候(这是绝大部分的情况),只要在开始访问一次 volatile 变量,返回的是临时变量。如果没有此临时变量,则需要访问两次,而降低了效率。通过这样修改以后,这样能提高 25% 的性能。wiki

关于单例模式,还有一个更有趣的实现,采用静态内部类,它能够延迟初始化(lazy initialization),并且多线程安全,还能保证高性能,如下:

 class Singleton{
      private Singleton(){}//私有构造方法,避免外部创建实例
      private static class SingletonHolder
         {
          public static final Singleton instance= new Singleton();
         }
      public static Singleton getInstance()
         {
          return SingletonHolder.instance;
        }
}

利用内部类延迟初始化,这里是利用了 Java 的语言特性,内部类只有在使用的时候,才回去加载,从而初始化内部静态变量。关于线程安全,这是 Java 运行环境自动给你保证的,在加载的时候,会自动隐形的同步。在访问对象的时候,不需要同步 Java 虚拟机又会自动给你取消同步,所以效率非常高。

在反射的作用下,单例结构是会被破坏的,测试代码如下所示

package test;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import singleton.LazySingleton2;
/**
 * @author zhengrongjun
 */
public class LazySingleton2Test {
    public static void main(String[] args) {
        //创建第一个实例
        LazySingleton2 instance1 = LazySingleton2.getInstance();
        //通过反射创建第二个实例
        LazySingleton2 instance2 = null;
        try {
            Class<LazySingleton2> clazz = LazySingleton2.class;
            Constructor<LazySingleton2> cons = clazz.getDeclaredConstructor();
            cons.setAccessible(true);
            instance2 = cons.newInstance();
        } catch (Exception e) {
            e.printStackTrace();
        }
        //检查两个实例的hash值
        System.out.println("Instance 1 hash:" + instance1.hashCode());
        System.out.println("Instance 2 hash:" + instance2.hashCode());
    }
}

输出如下

Instance 1 hash:1694819250
Instance 2 hash:1365202186

根据哈希值可以看出,反射破坏了单例的特性,因此懒汉式V3版诞生了:

package singleton;
public class LazySingleton3 {
    private static boolean initialized = false;
    private LazySingleton3() {
        synchronized (LazySingleton3.class) {
            if (initialized == false) {
                initialized = !initialized;
            } else {
                throw new RuntimeException("单例已被破坏");
            }
        }
    }
    static class SingletonHolder {
        private static final LazySingleton3 instance = new LazySingleton3();
    }
    public static LazySingleton3 getInstance() {
        return SingletonHolder.instance;
    }
}

此时再运行一次测试类,出现如下提示

java.lang.reflect.InvocationTargetException
    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at test.LazySingleton3Test.main(LazySingleton3Test.java:21)
Caused by: java.lang.RuntimeException: 单例已被破坏
    at singleton.LazySingleton3.<init>(LazySingleton3.java:12)
    ... 5 more
Instance 1 hash:359023572

这里就保证了,反射无法破坏其单例特性.

在分布式系统中,有些情况下你需要在单例类中实现 Serializable 接口。这样你可以在文件系统中存储它的状态并且在稍后的某一时间点取出。让我们测试这个懒汉式V3版在序列化和反序列化之后是否仍然保持单例。
先将

public class LazySingleton3

修改为

public class LazySingleton3 implements Serializable 

上测试类如下

package test;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInput;
import java.io.ObjectInputStream;
import java.io.ObjectOutput;
import java.io.ObjectOutputStream;
import singleton.LazySingleton3;
public class LazySingleton3Test {
    public static void main(String[] args) {
        try {
            LazySingleton3 instance1 = LazySingleton3.getInstance();
            ObjectOutput out = null;
            out = new ObjectOutputStream(new FileOutputStream("filename.ser"));
            out.writeObject(instance1);
            out.close();
            //deserialize from file to object
            ObjectInput in = new ObjectInputStream(new FileInputStream("filename.ser"));
            LazySingleton3 instance2 = (LazySingleton3) in.readObject();
            in.close();
            System.out.println("instance1 hashCode=" + instance1.hashCode());
            System.out.println("instance2 hashCode=" + instance2.hashCode());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

输出如下

instance1 hashCode=2051450519
instance2 hashCode=1510067370

显然,我们又看到了两个实例类。为了避免此问题,我们需要提供 readResolve() 方法的实现。readResolve()代替了从流中读取对象。这就确保了在序列化和反序列化的过程中没人可以创建新的实例。

因此,我们提供懒汉式V4版代码如下

package singleton;
import java.io.Serializable;
public class LazySingleton4 implements Serializable {
    private static boolean initialized = false;
    private LazySingleton4() {
        synchronized (LazySingleton4.class) {
            if (initialized == false) {
                initialized = !initialized;
            } else {
                throw new RuntimeException("单例已被破坏");
            }
        }
    }
    static class SingletonHolder {
        private static final LazySingleton4 instance = new LazySingleton4();
    }
    public static LazySingleton4 getInstance() {
        return SingletonHolder.instance;
    }
    private Object readResolve() {
        return getInstance();
    }
}

此时,在运行测试类,输出如下

instance1 hashCode=2051450519
instance2 hashCode=2051450519

这表示此时已能保证序列化和反序列化的对象是一致的.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容

  • Java8张图 11、字符串不变性 12、equals()方法、hashCode()方法的区别 13、...
    Miley_MOJIE阅读 3,704评论 0 11
  • 从三月份找实习到现在,面了一些公司,挂了不少,但最终还是拿到小米、百度、阿里、京东、新浪、CVTE、乐视家的研发岗...
    时芥蓝阅读 42,246评论 11 349
  • 等你熬过那些孤独无助的时刻,你才会发现,原来自己并没有想象中那么脆弱。原来一个人,也可以活成千军万马的模样。
    叮咚_b22d阅读 189评论 1 0
  • 1.创建或者打开数据库 2.增删改 oc封装方法 注意 sqlite3_exec()可以执行任何SQL语句,比如创...
    动感新势力fan阅读 1,483评论 2 0
  • 生命是一艘行走的船, 载着出海时的喜悦, 载着深海中的艰难, 载着归海时的苦尽甘来。 生命, 从来不曾停歇。 生命...
    刘刘刘刘刘大地阅读 340评论 0 0