频率与穿透、绕射能力的关系

关于频率(波长)与穿透、绕射能力的关系,终于有人能说明白了

昨天那篇5G毫米波的文章推出之后,引起了很多读者的浓厚兴趣。正如文章所说,5G毫米波的信号覆盖能力很弱,这是它的一个重要缺陷,会制约它的后续发展。

但是,文章中关于毫米波信号覆盖能力差的原因描述,引起了部分读者的争议。

其实,同样的问题之前也有读者提出过。关于电磁波频率(波长)和信号覆盖能力之间的关系,很多人都存在疑问。

有人说,电磁波的频率越高,穿透力越弱,所以覆盖能力差。那么就有人问,X射线和γ射线频率高,不是用于医学摄片和金属设备探伤吗?

也有人问,频率越高,穿透能力越弱,为什么可见光的频率那么高,却可以穿透玻璃呢?

总而言之,众说纷纭,谁也说不清楚,到底频率和穿透能力之间是什么样的关系。

今天这篇文章,我们就详细解释一下这个问题。

首先,我们要澄清一些基本概念。

什么是电磁波?大家可能觉得,电磁波不就是光波和电波么,扭来扭去的那种正弦图形,就是电磁波。

动图封面

电磁波

严格来说,电磁波是以波动形式传播的电磁场。相同方向且相互垂直的电场和磁场,在空间中传播的震荡粒子波,就是电磁波。

电磁波的传播,不依赖于介质,就算在真空中,也可以传播。

太阳光,就是电磁波的一种可见的辐射形态。无线电波、微波、红外线、可见光、紫外线、X射线,都是电磁波。它们的主要区别,就是频率不同。

大家切记,水波、声波不是电磁波,而是机械波。它们是需要实体介质的,一个点上下运动,带动下一个点运动,形成了波。

动图封面

机械波

所以,请不要把电磁波想象成真的有那么一个正弦曲线在空间中扭动!

电磁波的类别和用处很多,为了避免发散,我们先仅限于讨论移动通信中的电磁波传播。

也就是说,我们重点讨论:电磁波信号由天线发出之后,究竟如何才能传播更远的距离?

电磁波的传播,有以下几种机制:直射、反射和衍射(绕射)。

A点到B点,如果没有障碍物,那么就是直射。它们之间只有空气。

现实中的环境不会那么简单,周围总会有一些障碍物,于是,会有一些反射。它们之间,还是空气为主。

信号会发生叠加,产生快衰弱(瑞利衰落)

如果有障碍物,那么问题出现了,信号该怎么过去呢?

除了借助环境物体进行反射之外,就只剩两个选择,一个是衍射(绕射),一个是直接穿透过去!

关于衍射,如果你的物理知识还没还给老师的话,应该记得“小孔成像”吧?

衍射,指的是波(如光波)遇到障碍物时偏离原来直线传播的物理现象。也就是说,电磁波具备“绕开”障碍物的能力。波长越长(大于障碍物尺寸),波动性越明显,越容易发生衍射现象。

再来看穿透。穿透这个比较麻烦。它包括了3个过程。

第一步,是障碍物表面。

电磁波从空气到障碍物(也就是导体),需要用外面的电场和磁场感应出介质里面的电场和磁场。

基于经典电磁波理论,电磁波在不同介质的传播速度,取决于介质(障碍物)的介电特性和介磁特性。如果介质是理想导体,导电性能特别好,那么,电场在该理想导体内部永远为0,就不能产生电场。

所以,如果障碍物是理想导体,所有的电磁波都会反射回去。

对于非理想导体(大部分介质),电磁波在表面上分成折射和反射的两部分。两部分的比例跟波速、入射角有关,而波速又跟频率有关。所以,经过介质表面时,电磁波信号就已经衰减掉一部分了。

好了,接下来是第二步,电磁波折射的一部分终于进入介质内部。

介质分为均匀介质和不均匀介质。我们先说均匀介质。

大部分介质不是理想导体或良导体,而是绝缘体或者有不同电阻率值的导体。

电磁波在绝缘体中的传播较为顺畅。像玻璃,就是一种非常典型的绝缘体。光线在玻璃中传播时,吸收率很低,所以玻璃看着就很透明。

很多晶体,例如食盐晶体、冰糖晶体,还有纯净的水结成的冰,都和玻璃类似。

最典型的就是光纤。光在光纤中,可以传输几十公里。

光纤的纤芯

电磁波在有不同电阻率的导体中传播,可以使用麦克斯韦方程式进行计算。具体怎么算,我就不解释了。

我们可以简单来理解:

电磁波是电场和磁场的传播,波峰和波谷是电场的两个极值。

当电磁波频率越高,则波长越短,波峰和波谷离得越近,介质某一点附近电场的差异就越大,相应电流就越大,所以损耗在介质里的能量就越多。

所以,相同前提条件下,在有电阻率的导体中,频率越高的电磁波,衰减得就越快。

比较典型的例子就是深海中的潜艇。潜艇都是使用长波或超长波与岸上基地进行通信的。因为无线信号的频率很低,在水中的衰减会更小。

对于不均匀介质,这个问题就更复杂了。

电磁波在不均匀介质中传播,等于是在不同介质之间反复地发生折射、反射、衍射。传播的路径更加复杂,最终射出的方向也非常复杂。过长的路径,也会带来更大的衰减(损耗)。

典型的例子是墙面,不管是钢筋混凝土墙面,还是砖砌墙面,都是不均匀介质,电磁波传播过程中,就有不同程度的衰减。

第三步,从介质到空气,又是一波折射和反射。

综上所述,大家应该明白,为什么频率越高的电磁波,穿透障碍物的能力越弱了吧?

我们家里使用的Wi-Fi,现在都有2.4GHz频段和5GHz频段。大家用过的话,应该都知道,5GHz信号的穿墙能力明显弱于2.4GHz信号。

还有我们昨天文章所说的毫米波,也是一样的道理。相同条件下,毫米波信号穿透障碍物的衰减,明显会大于Sub-6GHz的信号。

值得一提的是,不均匀介质的信号衰减程度,和介质颗粒度也有关系。如果这个颗粒打得很碎,颗粒很小,那么,对于低频电磁波来说,由于波长远大于颗粒尺寸,整体上电磁波的衰减会更小一些。

那么很多人会问,为什么高能射线例如X射线频率那么高,穿透力却很强呢?

这里面的原因很复杂。简单来说,对于这些频率极高的电磁波,经典的电动力学不能完全成立。

这是什么鬼理由?

这么说吧,X射线除了频率高之外,还有一个特性,那就是能量极强。

X射线照在介质上时,仅一小部分被介质的原子“挡住”,大部分经由原子之间的缝隙“穿过”,从而表现出很强的穿透能力。

那么,为什么像铅块这样的重金属可以有效阻挡X射线呢?因为铅块的原子序数较高,密度大,原子结构更紧密,不容易“穿透”。

好啦,文章写到这里,就要结束了。关于电磁波的波长频率与穿透能力的关系,大家都搞明白了吗?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容