BUUCTF CRYPTO

1.变异凯撒

题目为:
加密密文:afZ_r9VYfScOeO_UL^RWUc
格式:flag{ }
观察afZ_r这5个字母的ASCII码值依次为flag这5个字母的ASCII码值减去5,6,7,8,9

a = 5
for i in range(0,len(m)):
   print(chr(ord(m[i])+a),end = '')
   a += 1

flag{Caesar_variation}

2.Quoted-printable

Quoted-printable可译为“可打印字符引用编码”,编码常用在电子邮件中,它是MIME编码常见一种表示方法! 在邮件里面我们常需要用可打印的ASCII字符 (如字母、数字与"=")表示各种编码格式下的字符!
Quoted-printable将任何8-bit字节值可编码为3个字符:一个等号"="后跟随两个十六进制数字(0–9或A–F)表示该字节的数值。
例如,ASCII码换页符(十进制值为12)可以表示为"=0C", 等号"="(十进制值为61)必须表示为"=3D",所有字符必须表示为这种格式。因为Quoted-printable编码简单、方便因此在电子邮件中应用广泛!
Quoted-printable编码解码网址

3.Rabbit

rabbit是一种序列密码(流密码)
rabbit在线解密网址

4.[GWCTF 2019]BabyRSA

题目给了两个文件,一个加密secret的脚本,一个是secret文件

import sympy
from Crypto.Util.number import *

flag = 'GWHT{******}'
secret = '******'

assert(len(flag) == 38)

half = len(flag) / 2

flag1 = flag[:half]
flag2 = flag[half:]

secret_num = getPrime(1024) * bytes_to_long(secret)

p = sympy.nextprime(secret_num)
q = sympy.nextprime(p)

N = p * q

e = 0x10001

F1 = bytes_to_long(flag1)
F2 = bytes_to_long(flag2)

c1 = F1 + F2
c2 = pow(F1, 3) + pow(F2, 3)
assert(c2 < N)

m1 = pow(c1, e, N)
m2 = pow(c2, e, N)

output = open('secret', 'w')
output.write('N=' + str(N) + '\n')
output.write('m1=' + str(m1) + '\n')
output.write('m2=' + str(m2) + '\n')
output.close()

加密过程是将flag分成两部分F1,F2,结果不同的变换后得到c1,c2,再分别对它们用RSA加密。那我们求出c1,c2,就可以得到F1,F2,进而得到flag
secret里给出了N的值,分析加密过程:q = sympy.nextprime(p)
因此p,q的值是非常相近的,可以使用yafu分解
yafu-x64 "factor(@)" -batchfile 1.txt 得到p,q

# -*- coding:utf8 -*-
import gmpy2
from Crypto.Util.number import long_to_bytes
from z3 import *

n = 636585149594574746909030160182690866222909256464847291783000651837227921337237899651287943597773270944384034858925295744880727101606841413640006527614873110651410155893776548737823152943797884729130149758279127430044739254000426610922834573094957082589539445610828279428814524313491262061930512829074466232633130599104490893572093943832740301809630847541592548921200288222432789208650949937638303429456468889100192613859073752923812454212239908948930178355331390933536771065791817643978763045030833712326162883810638120029378337092938662174119747687899484603628344079493556601422498405360731958162719296160584042671057160241284852522913676264596201906163
p = 797862863902421984951231350430312260517773269684958456342860983236184129602390919026048496119757187702076499551310794177917920137646835888862706126924088411570997141257159563952725882214181185531209186972351469946269508511312863779123205322378452194261217016552527754513215520329499967108196968833163329724620251096080377748737
q = 797862863902421984951231350430312260517773269684958456342860983236184129602390919026048496119757187702076499551310794177917920137646835888862706126924088411570997141257159563952725882214181185531209186972351469946269508511312863779123205322378452194261217016552527754513215520329499967108196968833163329724620251096080377747699
m1 = 90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
m2 = 487443985757405173426628188375657117604235507936967522993257972108872283698305238454465723214226871414276788912058186197039821242912736742824080627680971802511206914394672159240206910735850651999316100014691067295708138639363203596244693995562780286637116394738250774129759021080197323724805414668042318806010652814405078769738548913675466181551005527065309515364950610137206393257148357659666687091662749848560225453826362271704292692847596339533229088038820532086109421158575841077601268713175097874083536249006018948789413238783922845633494023608865256071962856581229890043896939025613600564283391329331452199062858930374565991634191495137939574539546
e = 0x10001

d = gmpy2.invert(e,(p-1)*(q-1))
c1 = gmpy2.powmod(m1,d,n)
c2 = gmpy2.powmod(m2,d,n)

print("c1={}\nc2={}".format(c1,c2))

c1 = 2732509502629189160482346120094198557857912754
c2 = 5514544075236012543362261483183657422998274674127032311399076783844902086865451355210243586349132992563718009577051164928513093068525554

f1 = Int('f1')    #声明未知数,类型是整数类型Int
f2 = Int('f2')
s = Solver()      #创造一个通用solver

s.add((f1 + f2) == c1)    #使用add()给solver添加约束
s.add((pow(f1,3) + pow(f2,3)) == c2)

if s.check() == sat:      #检查solver中的约束 是否满足
    print s.model()       #获取一个解

f2 = 1141553212031156130619789508463772513350070909
f1 = 1590956290598033029862556611630426044507841845

print(long_to_bytes(f1)+long_to_bytes(f2))

5.[BJDCTF2020]RSA

题目为task.py,如下

from Crypto.Util.number import getPrime,bytes_to_long

flag=open("flag","rb").read()

p=getPrime(1024)
q=getPrime(1024)
assert(e<100000)
n=p*q
m=bytes_to_long(flag)
c=pow(m,e,n)
print c,n
print pow(294,e,n)

p=getPrime(1024)
n=p*q
m=bytes_to_long("BJD"*32)
c=pow(m,e,n)
print c,n

'''
output:
12641635617803746150332232646354596292707861480200207537199141183624438303757120570096741248020236666965755798009656547738616399025300123043766255518596149348930444599820675230046423373053051631932557230849083426859490183732303751744004874183062594856870318614289991675980063548316499486908923209627563871554875612702079100567018698992935818206109087568166097392314105717555482926141030505639571708876213167112187962584484065321545727594135175369233925922507794999607323536976824183162923385005669930403448853465141405846835919842908469787547341752365471892495204307644586161393228776042015534147913888338316244169120  13508774104460209743306714034546704137247627344981133461801953479736017021401725818808462898375994767375627749494839671944543822403059978073813122441407612530658168942987820256786583006947001711749230193542370570950705530167921702835627122401475251039000775017381633900222474727396823708695063136246115652622259769634591309421761269548260984426148824641285010730983215377509255011298737827621611158032976420011662547854515610597955628898073569684158225678333474543920326532893446849808112837476684390030976472053905069855522297850688026960701186543428139843783907624317274796926248829543413464754127208843070331063037
381631268825806469518166370387352035475775677163615730759454343913563615970881967332407709901235637718936184198930226303761876517101208677107311006065728014220477966000620964056616058676999878976943319063836649085085377577273214792371548775204594097887078898598463892440141577974544939268247818937936607013100808169758675042264568547764031628431414727922168580998494695800403043312406643527637667466318473669542326169218665366423043579003388486634167642663495896607282155808331902351188500197960905672207046579647052764579411814305689137519860880916467272056778641442758940135016400808740387144508156358067955215018
979153370552535153498477459720877329811204688208387543826122582132404214848454954722487086658061408795223805022202997613522014736983452121073860054851302343517756732701026667062765906277626879215457936330799698812755973057557620930172778859116538571207100424990838508255127616637334499680058645411786925302368790414768248611809358160197554369255458675450109457987698749584630551177577492043403656419968285163536823819817573531356497236154342689914525321673807925458651854768512396355389740863270148775362744448115581639629326362342160548500035000156097215446881251055505465713854173913142040976382500435185442521721  12806210903061368369054309575159360374022344774547459345216907128193957592938071815865954073287532545947370671838372144806539753829484356064919357285623305209600680570975224639214396805124350862772159272362778768036844634760917612708721787320159318432456050806227784435091161119982613987303255995543165395426658059462110056431392517548717447898084915167661172362984251201688639469652283452307712821398857016487590794996544468826705600332208535201443322267298747117528882985955375246424812616478327182399461709978893464093245135530135430007842223389360212803439850867615121148050034887767584693608776323252233254261047
'''

输出了两次用RSA加密的c和n,第一次输出的c是flag加密所得。这两次使用的n虽然不同,但是有共同的因子q,用广义欧几里得除法可求出这个共同的q,就可以得到p
e是小于100000的数,并且给了294使用e加密的结果,这两个数都不算大,因此采用爆破的方式得到e
解密脚本:

# -*- coding:utf-8 -*-
from gmpy2 import *
from Crypto.Util.number import *

c1 = 12641635617803746150332232646354596292707861480200207537199141183624438303757120570096741248020236666965755798009656547738616399025300123043766255518596149348930444599820675230046423373053051631932557230849083426859490183732303751744004874183062594856870318614289991675980063548316499486908923209627563871554875612702079100567018698992935818206109087568166097392314105717555482926141030505639571708876213167112187962584484065321545727594135175369233925922507794999607323536976824183162923385005669930403448853465141405846835919842908469787547341752365471892495204307644586161393228776042015534147913888338316244169120
n1 = 13508774104460209743306714034546704137247627344981133461801953479736017021401725818808462898375994767375627749494839671944543822403059978073813122441407612530658168942987820256786583006947001711749230193542370570950705530167921702835627122401475251039000775017381633900222474727396823708695063136246115652622259769634591309421761269548260984426148824641285010730983215377509255011298737827621611158032976420011662547854515610597955628898073569684158225678333474543920326532893446849808112837476684390030976472053905069855522297850688026960701186543428139843783907624317274796926248829543413464754127208843070331063037
c2 = 979153370552535153498477459720877329811204688208387543826122582132404214848454954722487086658061408795223805022202997613522014736983452121073860054851302343517756732701026667062765906277626879215457936330799698812755973057557620930172778859116538571207100424990838508255127616637334499680058645411786925302368790414768248611809358160197554369255458675450109457987698749584630551177577492043403656419968285163536823819817573531356497236154342689914525321673807925458651854768512396355389740863270148775362744448115581639629326362342160548500035000156097215446881251055505465713854173913142040976382500435185442521721
n2 = 12806210903061368369054309575159360374022344774547459345216907128193957592938071815865954073287532545947370671838372144806539753829484356064919357285623305209600680570975224639214396805124350862772159272362778768036844634760917612708721787320159318432456050806227784435091161119982613987303255995543165395426658059462110056431392517548717447898084915167661172362984251201688639469652283452307712821398857016487590794996544468826705600332208535201443322267298747117528882985955375246424812616478327182399461709978893464093245135530135430007842223389360212803439850867615121148050034887767584693608776323252233254261047

q = gcd(n1,n2)

output = 381631268825806469518166370387352035475775677163615730759454343913563615970881967332407709901235637718936184198930226303761876517101208677107311006065728014220477966000620964056616058676999878976943319063836649085085377577273214792371548775204594097887078898598463892440141577974544939268247818937936607013100808169758675042264568547764031628431414727922168580998494695800403043312406643527637667466318473669542326169218665366423043579003388486634167642663495896607282155808331902351188500197960905672207046579647052764579411814305689137519860880916467272056778641442758940135016400808740387144508156358067955215018
for i in range(100000):
    res = pow(294,i,n1)
    if(res == output):
        e = i
        break

p = n1//q
d = invert(e,(p-1)*(q-1))
m = pow(c1,d,n1)
flag = long_to_bytes(m)
print(flag)

6.坏蛋是雷宾

题目:
Pk是523798549,密文是162853095,校验码二进制值是110001,放在明文后一起加密的,明文与密文长度相同

Rabin公钥密码
加密:选择两个大素数p和q做为私钥,n (= p * q)做为公钥
设明文为m,则密文为c ≡ m² (mod n)
解密:

参考:
https://xz.aliyun.com/t/5113
https://blog.csdn.net/qq_26816591/article/details/82949341
解密脚本:

# -*- coding:utf-8 -*-
from gmpy2 import *
import hashlib

n = 523798549
p = 10663
q = 49123
e = 2
c = 162853095

yp = invert(p,q)
yq = invert(q,p)
mp = pow(c,(p+1)/4,p)
mq = pow(c,(q+1)/4,q)

a = (yp*p*mq + yq*q*mp)%n
b = n - int(a)
c = (yp*p*mq - yq*q*mp)%n
d = n - int(c)

for i in (a,b,c,d):
    if(bin(i)[-6:]=='110001'):
        m1 = bin(i)[:-6]
        print(m1)

m = str(int(m1,2))
md5 = hashlib.md5() #获取一个md5加密算法对象
md5.update(m.encode("utf-8"))   #把字符串转成二进制
#因为hashlib是对二进制进行加密的,如果直接对字符串加密的话, 会报错的。因此需要通过encode将字符串转码成二进制格式
flag = md5.hexdigest()  #获取加密的结果

print(flag)

7.古典密码知多少

猪圈密码

标准银河字母(SGA)--出自游戏《指挥官基恩》系列

圣堂武士密码(Templar Cipher)

题目:

对照着写下来是:FGCPFLIRTUASYON,栅栏密码解密得:FLAGISCRYPTOFUN
各种古典密码解密网址
各种奇怪古典密码解析大全

8.[NCTF2019]childRSA

smooth number(光滑数):若一正整数的素因数均不大于B,此整数即为B-光滑数。如10和12的约数分解分别为2 × 5和22 × 3,二者素因数也都不大于5,因此二者均是是5-光滑数
Pollard's p-1 method
Pollard's p-1 method说明

题目为:

from random import choice
from Crypto.Util.number import isPrime, sieve_base as primes
from flag import flag

def getPrime(bits):
    while True:
        n = 2
        while n.bit_length() < bits:
            n *= choice(primes)
        if isPrime(n + 1):
            return n + 1

e = 0x10001
m = int.from_bytes(flag.encode(), 'big')
p, q = [getPrime(2048) for _ in range(2)]
n = p * q
c = pow(m, e, n)

# n = 32849718197337581823002243717057659218502519004386996660885100592872201948834155543125924395614928962750579667346279456710633774501407292473006312537723894221717638059058796679686953564471994009285384798450493756900459225040360430847240975678450171551048783818642467506711424027848778367427338647282428667393241157151675410661015044633282064056800913282016363415202171926089293431012379261585078566301060173689328363696699811123592090204578098276704877408688525618732848817623879899628629300385790344366046641825507767709276622692835393219811283244303899850483748651722336996164724553364097066493953127153066970594638491950199605713033004684970381605908909693802373826516622872100822213645899846325022476318425889580091613323747640467299866189070780620292627043349618839126919699862580579994887507733838561768581933029077488033326056066378869170169389819542928899483936705521710423905128732013121538495096959944889076705471928490092476616709838980562233255542325528398956185421193665359897664110835645928646616337700617883946369110702443135980068553511927115723157704586595844927607636003501038871748639417378062348085980873502535098755568810971926925447913858894180171498580131088992227637341857123607600275137768132347158657063692388249513
# c = 26308018356739853895382240109968894175166731283702927002165268998773708335216338997058314157717147131083296551313334042509806229853341488461087009955203854253313827608275460592785607739091992591431080342664081962030557042784864074533380701014585315663218783130162376176094773010478159362434331787279303302718098735574605469803801873109982473258207444342330633191849040553550708886593340770753064322410889048135425025715982196600650740987076486540674090923181664281515197679745907830107684777248532278645343716263686014941081417914622724906314960249945105011301731247324601620886782967217339340393853616450077105125391982689986178342417223392217085276465471102737594719932347242482670320801063191869471318313514407997326350065187904154229557706351355052446027159972546737213451422978211055778164578782156428466626894026103053360431281644645515155471301826844754338802352846095293421718249819728205538534652212984831283642472071669494851823123552827380737798609829706225744376667082534026874483482483127491533474306552210039386256062116345785870668331513725792053302188276682550672663353937781055621860101624242216671635824311412793495965628876036344731733142759495348248970313655381407241457118743532311394697763283681852908564387282605279108

第一种情况:非预期解
由于choice()函数是从小于10000的素数中随机挑选一个,相对于2048bits而言,|p-q|极有可能很小,尝试使用yafu来快速分解得到p,q

from gmpy2 import *
from Crypto.Util.number import *

p = 178449493212694205742332078583256205058672290603652616240227340638730811945224947826121772642204629335108873832781921390308501763661154638696935732709724016546955977529088135995838497476350749621442719690722226913635772410880516639651363626821442456779009699333452616953193799328647446968707045304702547915799734431818800374360377292309248361548868909066895474518333089446581763425755389837072166970684877011663234978631869703859541876049132713490090720408351108387971577438951727337962368478059295446047962510687695047494480605473377173021467764495541590394732685140829152761532035790187269724703444386838656193674253139
q = 184084121540115307597161367011014142898823526027674354555037785878481711602257307508985022577801782788769786800015984410443717799994642236194840684557538917849420967360121509675348296203886340264385224150964642958965438801864306187503790100281099130863977710204660546799128755418521327290719635075221585824217487386227004673527292281536221958961760681032293340099395863194031788435142296085219594866635192464353365034089592414809332183882423461536123972873871477755949082223830049594561329457349537703926325152949582123419049073013144325689632055433283354999265193117288252918515308767016885678802217366700376654365502867
n = 32849718197337581823002243717057659218502519004386996660885100592872201948834155543125924395614928962750579667346279456710633774501407292473006312537723894221717638059058796679686953564471994009285384798450493756900459225040360430847240975678450171551048783818642467506711424027848778367427338647282428667393241157151675410661015044633282064056800913282016363415202171926089293431012379261585078566301060173689328363696699811123592090204578098276704877408688525618732848817623879899628629300385790344366046641825507767709276622692835393219811283244303899850483748651722336996164724553364097066493953127153066970594638491950199605713033004684970381605908909693802373826516622872100822213645899846325022476318425889580091613323747640467299866189070780620292627043349618839126919699862580579994887507733838561768581933029077488033326056066378869170169389819542928899483936705521710423905128732013121538495096959944889076705471928490092476616709838980562233255542325528398956185421193665359897664110835645928646616337700617883946369110702443135980068553511927115723157704586595844927607636003501038871748639417378062348085980873502535098755568810971926925447913858894180171498580131088992227637341857123607600275137768132347158657063692388249513
c = 26308018356739853895382240109968894175166731283702927002165268998773708335216338997058314157717147131083296551313334042509806229853341488461087009955203854253313827608275460592785607739091992591431080342664081962030557042784864074533380701014585315663218783130162376176094773010478159362434331787279303302718098735574605469803801873109982473258207444342330633191849040553550708886593340770753064322410889048135425025715982196600650740987076486540674090923181664281515197679745907830107684777248532278645343716263686014941081417914622724906314960249945105011301731247324601620886782967217339340393853616450077105125391982689986178342417223392217085276465471102737594719932347242482670320801063191869471318313514407997326350065187904154229557706351355052446027159972546737213451422978211055778164578782156428466626894026103053360431281644645515155471301826844754338802352846095293421718249819728205538534652212984831283642472071669494851823123552827380737798609829706225744376667082534026874483482483127491533474306552210039386256062116345785870668331513725792053302188276682550672663353937781055621860101624242216671635824311412793495965628876036344731733142759495348248970313655381407241457118743532311394697763283681852908564387282605279108
e = 0x10001

d = invert(e,(p-1)*(q-1))
m = pow(c,d,n)
flag = long_to_bytes(m)
print(flag)

第二种情况:
https://www.cnblogs.com/Konmu/p/12578013.html
https://blog.csdn.net/weixin_44017838/article/details/104907559
因数分解——Pollard' p-1

9.[BJDCTF2020]这是base??

# -*- coding:utf-8 -*-
dict1 = {0: 'J', 1: 'K', 2: 'L', 3: 'M', 4: 'N', 5: 'O', 6: 'x', 7: 'y', 8: 'U', 9: 'V', 10: 'z', 11: 'A', 12: 'B', 13: 'C', 14: 'D', 15: 'E', 16: 'F', 17: 'G', 18: 'H', 19: '7', 20: '8', 21: '9', 22: 'P', 23: 'Q', 24: 'I', 25: 'a', 26: 'b', 27: 'c', 28: 'd', 29: 'e', 30: 'f', 31: 'g', 32: 'h', 33: 'i', 34: 'j', 35: 'k', 36: 'l', 37: 'm', 38: 'W', 39: 'X', 40: 'Y', 41: 'Z', 42: '0', 43: '1', 44: '2', 45: '3', 46: '4', 47: '5', 48: '6', 49: 'R', 50: 'S', 51: 'T', 52: 'n', 53: 'o', 54: 'p', 55: 'q', 56: 'r', 57: 's', 58: 't', 59: 'u', 60: 'v', 61: 'w', 62: '+', 63: '/', 64: '='}
#反转字典
dict2 = {v: k for k, v in dict1.items()}

chipertext = "FlZNfnF6Qol6e9w17WwQQoGYBQCgIkGTa9w3IQKw"
value = []
final = []
flag = ""
for i in chipertext:
    value.append(dict2[i])
for i in value:
    i = bin(i)
    if(len(i[2:])<6):
        i = "0"*(6-len(i[2:]))+i[2:]
    else:
        i = i[2:]
    flag += i
step = 8
splitt = [flag[i:i+step] for i in range(0,len(flag),step)]
for i in splitt:
    final.append(i)
for i in final:
    print(chr(int(i,2)),end="")
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容