大数据基本操作锦集之Hive的基本操作(二)

哈喽,大家好,我是汉斯老师。近几年来,互联网行业由于较高的薪资收入,受到许多人的追捧。很多年轻的学子,或是其他行业的有志青年,都想要投身到这个行业中来。然而一方面受到“互联网寒冬”的影响,最近频频传出各家知名互联网公司裁员缩编的消息;另一方面,大量的人才涌入,又使得互联网产业在职场上呈现出供过于求的特征,并最终导致了职场上的激烈竞争。那么互联网行业未来的潜力在哪里?我们又应该在哪个方向上发力,才能保证自己可以获得一份高薪而稳定的工作?基于多年的互联网行业从业经验,汉斯老师在这里向大家推荐大数据方向,希望通过本人的《三分钟入门大数据》和《十分钟精通大数据》等系列文章,帮助所有有志了解学习大数据的朋友掌握大数据的相关知识,也欢迎所有对互联网行业以及大数据领域感兴趣的朋友前来交流。




前文请参看这里:https://www.jianshu.com/p/f886c1c17ea1

hive 加载数据

1.加载数据

- 本地数据源:

/home/hadoop/sample.txt hadoop@data2:~$ vim sample.txt

1201 Gopal 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technical writer

1204 Kiran 40000 Hr Admin

1205 Kranthi 30000 Op Admin

- 从本地加载数据

hive> LOAD DATA LOCAL INPATH '/home/hadoop/sample.txt' OVERWRITE INTO TABLE employee;

Loading data to table test.employee Table test.employee stats: [numFiles=1, numRows=0, totalSize=201, rawDataSize=0] OK Time taken: 0.513 seconds

- 从hdfs上面加载数据:

hive> LOAD DATA INPATH '/home/hadoop/sample.txt' OVERWRITE INTO TABLE employee;

- 使用hadoop 命令:'hadoop fs -put /home/hadoop/sample.txt /user/hive/warehouse/test.db/employee/'

- 查看数据: hive> select * from employee;

OK

1201 Gopal 45000 Technical

1202 Manisha 45000 Proof

1203 Masthanvali 40000 Technical writer

1204 Kiran 40000 Hr

1205 Kranthi 30000 Op Time taken: 0.07 seconds, Fetched: 5 row(s)

- 查看在hdfs上路径:

hadoop@data2:~$ hadoop fs -ls /user/hive/warehouse/test.db SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/software/hadoop-2.6.0-cdh5.9.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/software/hbase-1.2.0-cdh5.9.0/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] Found 2 items drwxr-xr-x - hadoop supergroup 0 2017-05-15 12:43 /user/hive/warehouse/test.db/emp drwxr-xr-x - hadoop supergroup 0 2017-05-15 13:10 /user/hive/warehouse/test.db/employee

- 导出到hdfs上来:去掉local

hive> insert overwrite directory '/home/hadoop/emp' > select * from emp;

- 查看目录: hadoop@data2:~/emp$ hadoop fs -ls /home/hadoop/emp SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/software/hadoop-2.6.0-cdh5.9.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/software/hbase-1.2.0-cdh5.9.0/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] Found 1 items -rwxr-xr-x 3 hadoop supergroup 330 2017-05-15 15:36 /home/hadoop/emp/000000_0

- 使用hadoop命令:hadoop fs -get /user/hive/warehouse/test.db/emp/* /home/hadoop/hive

2.hive导出数据

1.导出到本地:

1.1. 命令

hive> insert overwrite local directory '/home/hadoop/emp' > select * from emp;

Query ID = hadoop_20170515153232_366cdc86-2146-423b-ab07-18779323edb6 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks is set to 0 since there's no reduce operator Starting Job = job_1492396415914_1296, Tracking URL = http://data1.XXXXXX.cn:8088/proxy/application_1492396415914_1296/ Kill Command = /software/hadoop-2.6.0-cdh5.9.0/bin/hadoop job -kill job_1492396415914_1296 Hadoop job information for Stage-1: number of mappers: 1;

number of reducers: 0 2017-05-15 15:32:18,465 Stage-1 map = 0%, reduce = 0% 2017-05-15 15:32:23,584 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.23 sec MapReduce Total cumulative CPU time: 1 seconds 230 msec Ended Job = job_1492396415914_1296 Copying data to local directory /home/hadoop/emp MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Cumulative CPU: 1.23 sec HDFS Read: 3583 HDFS Write: 330 SUCCESS Total MapReduce CPU Time Spent: 1 seconds 230 msec OK Time taken: 9.642 seconds

1.2. 查看目录:

hadoop@data2:~$ cd /home/hadoop/emp/ hadoop@data2:~/emp$ ll total 16

drwxrwxr-x 2 hadoop hadoop 4096 May 15 15:32 ./

drwxr-xr-x 15 hadoop hadoop 4096 May 15 15:32 ../

-rw-r--r-- 1 hadoop hadoop 330 May 15 15:32 000000_0

-rw-r--r-- 1 hadoop hadoop 12 May 15 15:32 .000000_0.crc hadoop@data2:~/emp$ vim 000000_0

1201^A Gopal^A45000^A Technical^Amanager 1202^AManisha^A45000^AProof^Areader 1203^AMasthanvali^A40000^ATechnicali^Awriter 1204^AKiran^A40000^AHr^AAdmin 1205^AKranthi^A30000^AOp^AAdmin

1206^AGopal^A45000^A Technical^Amanager

1207^AManisha 45000^AProof^Areader^A\N 1208^AMasthanvali^A40000^ATechnicali^Awriter 1209^AKiran^A40000^AHr^AAdmin 1210^AKranthi^A30000^AOp^AAdmin

1.3. 默认保存分割符号是^A(\\x01),我们想要更直观的数据可以通过自己制定列分割符号:

hive> insert overwrite local directory '/home/hadoop/emp' > row format delimited > fields terminated by '\t' > select * from emp; 1.4. 再次查看数据: hadoop@data2:~/emp$ ll total 16 drwxrwxr-x 2 hadoop hadoop 4096 May 15 15:42 ./

drwxr-xr-x 15 hadoop hadoop 4096 May 15 15:42 ../

-rw-r--r-- 1 hadoop hadoop 330 May 15 15:42 000000_0

-rw-r--r-- 1 hadoop hadoop 12 May 15 15:42 .000000_0.crc hadoop@data2:~/emp$ cat 000000_0

1201 Gopal 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technicali writer

1204 Kiran 40000 Hr Admin

1205 Kranthi 30000 Op Admin

1206 Gopal 45000 Technical manager

1207 Manisha 45000 Proof reader \N

1208 Masthanvali 40000 Technicali writer

1209 Kiran 40000 Hr Admin

1210 Kranthi 30000 Op Admin

2.导出到hdfs上来:

2.1.去掉local:

hive> insert overwrite directory '/home/hadoop/emp' > select * from emp;

2.2.查看目录:

hadoop@data2:~/emp$ hadoop fs -ls /home/hadoop/emp SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/software/hadoop-2.6.0-cdh5.9.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/software/hbase-1.2.0-cdh5.9.0/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] Found 1 items -rwxr-xr-x 3 hadoop supergroup 330 2017-05-15 15:36 /home/hadoop/emp/000000_0

2.3. 使用hadoop命令:hadoop fs -get /user/hive/warehouse/test.db/emp/* /home/hadoop/hive

hive的DML操作

select ...where ...

hive> select * from emp where salary > 40000 ;

OK

1201 Gopal 45000 Technical manager

1202 Manisha 45000 Proof reader

Time taken: 0.116 seconds, Fetched: 2 row(s)

2.从一张表查询插入另一张表:insert into table ..select ..from ..

hive> insert into table emp_bak select eid,ename,salary,destination,dept from emp where eid < 1206 ;

hive> select * from emp_bak > ;

OK

1201 Gopal 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technicali writer

1204 Kiran 40000 Hr Admin

1205 Kranthi 30000 Op Admin

Time taken: 0.035 seconds, Fetched: 5 row(s)

3.覆盖表:insert overwrite table ... select ..from ...

hive> insert overwrite table emp_bak select eid,ename,salary,destination,dept from emp where eid >= 1206 ;

hive> select * from emp_bak;

OK

1206 Gopal 45000 Technical manager

1207 Manisha 45000 Proof reader NULL

1208 Masthanvali 40000 Technicali writer

1209 Kiran 40000 Hr Admin

1210 Kranthi 30000 Op Admin

Time taken: 0.034 seconds, Fetched: 5 row(s)


6.连接

6.1.join

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT

> FROM CUSTOMERS c JOIN ORDERS o

> ON (c.ID = o.CUSTOMER_ID);

...(执行过程日志省略)

OK

2 Kali 31 2050

3 Cham 20 3000

4 Muffi 25 1500

Time taken: 14.722 seconds, Fetched: 3 row(s)

6.2.LEFT OUTER JOIN:LEFT JOIN返回左表中的所有的值,加上右表,或JOIN子句没有匹配的情况下返回NULL。

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > LEFT OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);

Total MapReduce CPU Time Spent: 1 seconds 590 msec

OK

1 Ramsh NULL NULL

2 Kali 2050 2009-05-08 00:00:00

3 Cham 3000 2009-10-08 00:00:00

4 Muffi 1500 2009-11-20 00:00:00

5 Kaush NULL NULL

Time taken: 14.277 seconds, Fetched: 5 row(s)

6.3.RIGHT OUTER JOIN:RIGHT JOIN返回右表中的所有值,加上左表,或者没有匹配的情况下返回NULL。

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > RIGHT OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);

Total MapReduce CPU Time Spent: 2 seconds 200 msec

OK

3 Cham 3000 2009-10-08 00:00:00

2 Kali 2050 2009-05-08 00:00:00

4 Muffi 1500 2009-11-20 00:00:00

6.4.FULL OUTER JOIN :连接表包含两个表的所有记录,或两侧缺少匹配结果那么使用NULL值填补

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > FULL OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);

Total MapReduce CPU Time Spent: 4 seconds 740 msec

OK

1 Ramsh NULL NULL

2 Kali 2050 2009-05-08 00:00:00

3 Cham 3000 2009-10-08 00:00:00

4 Muffi 1500 2009-11-20 00:00:00

5 Kaush NULL NULL

Time taken: 15.693 seconds, Fetched: 5 row(s)


UDF函数:用户自定义函数。

1.首先要先继承 UDF

2.重写evale方法import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.hive.ql.exec.UDF;

/*** 先去掉空值然后匹配正则去掉一些特殊字符,空格 如果满足条件就返回数据,不满足置为null*/

public class NameUDF extends UDF {

// 剔除特殊字符,空格

public static final String nameRegx = "\\pP|\\pS|\\s";

public String evaluate(String name) {

// 判断是否为空和null值

if (name != null && !"".equals(name)) {

// 将特殊字符使用空字符串来补充

name = name.replaceAll(nameRegx, "");

if ("".equals(name)) {

return null;

} else {

return name;

}

}

return null; }}

3.jar包传入hdfs

hadoop@data2:~$ hadoop fs -put dw-udf-0.0.1-SNAPSHOT.jar /user/udf/

4.添加jar包

hive> add jar hdfs://XXXXX:9000/user/udf/dw-udf-0.0.1-SNAPSHOT.jar;converting to local hdfs://XXXXX:9000/user/udf/dw-udf-0.0.1-SNAPSHOT.jarAdded [/tmp/fbbf05c3-c70f-4a16-9033-5d57119a18d0_resources/dw-udf-0.0.1-SNAPSHOT.jar] to class pathAdded resources: [hdfs://XXXX:9000/user/udf/dw-udf-0.0.1-SNAPSHOT.jar]

5.创建临时函数

hive> create temporary function FN_CLS_Name as 'cn.XXXXXX.scrm.udf.NameUDF';

OK Time taken: 0.013 seconds

6.使用udf函数

- 查看表:

hive> select * from emp_bak;

OK

1201 @@# 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technicali writer

1204 Kiran 40000 Hr Admin

1205 Kranthi 30000 Op Admin

Time taken: 0.033 seconds, Fetched: 5 row(s)

- 使用udf函数然后查看

hive> insert overwrite table emp_bak select eid,FN_CLS_Name(ename),salary,destination,dept from emp_bak ;

hive> select * from emp_bak;

OK

1201 NULL 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technicali writer

1204 Kiran 40000 Hr Admin

1205 Kranthi 30000 Op Admin

Time taken: 0.043 seconds, Fetched: 5 row(s)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354