2.1 Binary Variables

碎碎念:这节二元分布折腾了我好一整子,因为直接看英文,后面再看中文翻译,折腾得够呛的,不过现在看到英文虽然还是很怕,但下意识不是跳过了,而是会硬着头皮读下去,至于读不读得懂又是另一回事啦!虽然还有一大部分内容还有四五十页,不过,嘿嘿,我打算着手中文了,要不我真的快被榨干了(┬_┬)

repost : the link between Bayes'theorem and maxmizing likelihood function

repost : the introduction about the Bernoulli distribution & Binary Variables & Multinomial Variable & beta distribution & Dirichlet Distribution

Bayesian threorems(贝叶斯定理)

2.1.1

在机器学习的应用中,它属于后验概率(posterior distribution), 表示事情已经发生的结果下,它属于哪类。

其中,

Prior probability (先验概率)

Class-conditional-probability (类条件概率)

Posterior probability(后验概率)

因为分子为正数,对后面的估计没有影响,即后验概率与(先验概率x类条件概率)成正比关系,即共轭性(conjugacy)。

但是,实际问题中我们获取的数据可能只是有限数目的样本数据,而先验概率和类条件概率都是未知的,如果仅仅根据样本数据分类时,我们必须先对先验概率和类条件概率进行估计,再套用贝叶斯公式,先验概率比较简单,而类条件概率比较难,信息是随机的,样本数据不多,这样我们就要将其转换为估计参数,其中最大似然估计就是一种较好的估计方法。


the beta distribution(贝塔分布) ——  the prior probability

其中gramma function是为了保证beta distribution的归一化(normalized),其定义如下:

百度百科


百度百科

(3)保证beta distribution 归一化(normalizedS):

Why introduce the beta distribution :

为了找到一种先验概率与后验概率(即贝叶斯公式)有着相同的公式形式,从而符合共轭性,如果找到这样的函数,则这样的函数会有很多有用的性质,所以,我们找到了 beta distribution,与后验函数有着相同的函数形式,如下:

the mean(均值) and variance(方差)of the beta distribution are given by:

其中,a and b are often called hyperparameters(超参数),控制参数\mu

来源《PRML》Figure 2.2

Maximum likelihood estimation —— the posterior dristribution

why introduce the MLE:

由Bayesian threothm的思路,类条件概率比较难,信息是随机的,样本数据不多,这样我们就要将其转换为估计参数,其中最大似然估计就是一种较好的估计方法

最大似然估计目的是:利用已知的样本结果,反推最有可能导致这样结果的参数值

最大似然估计原理是:给定一个概率分布D,假定其概念密度函数(连续分布)或者概率聚集函数(离散分布)为fD,以及一个分布参数θ,我们可以从这个分布中抽出一个具有n个值的采样X1,X2,…,Xn,通过利用fD,我们就能计算出其概率: 

最大似然估计会寻找关于θ的最可能的值(即,在所有可能的θ取值中,寻找一个值使这个采样的“可能性”最大化)。

要在数学上实现最大似然估计法,我们首先要定义可能性:并且在θ的所有取值上,使这个函数最大化。这个使可能性最大的值即被称为θ的最大似然估计。

计算 maximum likelihood estimation 的步骤如下:

(1)写出似然函数:


(2)取对数:

\mu 求导数(derivative)并令其为0:

此方程为对数似然方程。解对数似然方程所得,即为未知参数 \mu 的最大似然估计值。同时,\mu 为样本均值(sample mean)。

注:the difference between the maximum likelihood function and binomial distribution :

二项分布的似然函数为(就是二项分布除归一化参数之外的后面那部分,似然函数之所以不是pdf,是因为它不需要归一化)。

Bernoulli distribution(伯努利分布):

2.1.2



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容