1.用法
synchronized可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。
synchronized有三种应用方式:
- 作用于实例方法,当前实例加锁,进入同步代码前要获得当前实例的锁;
- 作用于静态方法,当前类加锁,进去同步代码前要获得当前类对象的锁;
- 作用于代码块,对括号里配置的对象加锁。
2.实现原理
2.1 Java对象头
synchronized用的锁存在Java对象头里,Java对象头里的Mark Word默认存储对象的HashCode、分代年龄和锁标记位。在运行期间,Mark Word里存储的数据会随着锁标志位的变化而变化。32位JVM的Mark Word可能变化存储为以下5种数据:
锁一共有四种状态,级别从低到高依次是:无锁状态、偏向锁状态、轻量级锁状态和重量级锁状态,这几个状态随着竞争情况逐渐升级。为了提高获得锁和释放锁的效率,锁可以升级但不能降级,意味着偏向锁升级为轻量级锁后不能降级为偏向锁。
偏向锁
当我们创建一个对象时,该对象的部分Markword关键数据如下。
从图中可以看出,偏向锁的标志位是“01”,状态是“0”,表示该对象还没有被加上偏向锁。(“1”是表示被加上偏向锁)。该对象被创建出来的那一刻,就有了偏向锁的标志位,这也说明了所有对象都是可偏向的,但所有对象的状态都为“0”,也同时说明所有被创建的对象的偏向锁并没有生效。
不过,当线程执行到临界区(critical section)时,此时会利用CAS(Compare and Swap)操作,将线程ID插入到Markword中,同时修改偏向锁的标志位。
所谓临界区,就是只允许一个线程进去执行操作的区域,即同步代码块。CAS是一个原子性操作
此时的Mark word的结构信息如下:
此时偏向锁的状态为“1”,说明对象的偏向锁生效了,同时也可以看到,哪个线程获得了该对象的锁。
偏向锁是jdk1.6引入的一项锁优化,其中的“偏”是偏心的偏。它的意思就是说,这个锁会偏向于第一个获得它的线程,在接下来的执行过程中,假如该锁没有被其他线程所获取,没有其他线程来竞争该锁,那么持有偏向锁的线程将永远不需要进行同步操作。也就是说:在此线程之后的执行过程中,如果再次进入或者退出同一段同步块代码,并不再需要去进行加锁或者解锁操作,而是会做以下的步骤:
Load-and-test,也就是简单判断一下当前线程id是否与Markword当中的线程id是否一致.
如果一致,则说明此线程已经成功获得了锁,继续执行下面的代码.
如果不一致,则要检查一下对象是否还是可偏向,即“是否偏向锁”标志位的值。
如果还未偏向,则利用CAS操作来竞争锁,也即是第一次获取锁时的操作。
释放锁
偏向锁的释放采用了一种只有竞争才会释放锁的机制,线程是不会主动去释放偏向锁,需要等待其他线程来竞争。偏向锁的撤销需要等待全局安全点(这个时间点是上没有正在执行的代码)。其步骤如下:
暂停拥有偏向锁的线程,判断锁对象石是否还处于被锁定状态;
撤销偏向锁,恢复到无锁状态或者轻量级锁的状态;
安全点会导致stw(stop the word),导致性能下降,这种情况下应当禁用;
查看停顿–安全点停顿日志
要查看安全点停顿,可以打开安全点日志,通过设置JVM参数 -
XX:+PrintGCApplicationStoppedTime 会打出系统停止的时间,
添加-XX:+PrintSafepointStatistics -XX:PrintSafepointStatisticsCount=1 这两个参数会打印出详细信息,可以查看到使用偏向锁导致的停顿,时间非常短暂,但是争用严重的情况下,停顿次数也会非常多;
注意:安全点日志不能一直打开:
- 安全点日志默认输出到stdout,一是stdout日志的整洁性,二是stdout所重定向的文件如果不在/dev/shm,可能被锁。
- 对于一些很短的停顿,比如取消偏向锁,打印的消耗比停顿本身还大。
- 安全点日志是在安全点内打印的,本身加大了安全点的停顿时间。
所以安全日志应该只在问题排查时打开。
如果在生产系统上要打开,再再增加下面四个参数:
-XX:+UnlockDiagnosticVMOptions -XX: -DisplayVMOutput -XX:+LogVMOutput -XX:LogFile=/dev/shm/vm.log
打开Diagnostic(只是开放了更多的flag可选,不会主动激活某个flag),关掉输出VM日志到stdout,输出到独立文件,/dev/shm目录(内存文件系统)。
此日志分三部分:
第一部分是时间戳,VM Operation的类型
第二部分是线程概况,被中括号括起来
total: 安全点里的总线程数
initially_running: 安全点时开始时正在运行状态的线程数
wait_to_block: 在VM Operation开始前需要等待其暂停的线程数
第三部分是到达安全点时的各个阶段以及执行操作所花的时间,其中最重要的是vmop
spin: 等待线程响应safepoint号召的时间;
block: 暂停所有线程所用的时间;
sync: 等于 spin+block,这是从开始到进入安全点所耗的时间,可用于判断进入安全点耗时;
cleanup: 清理所用时间;
vmop: 真正执行VM Operation的时间。
可见,那些很多但又很短的安全点,全都是RevokeBias, 高并发的应用会禁用掉偏向锁。
jvm开启/关闭偏向锁
开启偏向锁:-XX:+UseBiasedLocking -XX:BiasedLockingStartupDelay=0
关闭偏向锁:-XX:-UseBiasedLocking
轻量级锁
自旋锁的目标是降低线程切换的成本。如果锁竞争激烈,我们不得不依赖于重量级锁,让竞争失败的线程阻塞;如果完全没有实际的锁竞争,那么申请重量级锁都是浪费的。轻量级锁的目标是,减少无实际竞争情况下,使用重量级锁产生的性能消耗,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。
顾名思义,轻量级锁是相对于重量级锁而言的。使用轻量级锁时,不需要申请互斥量,仅仅将Mark Word中的部分字节CAS更新指向线程栈中的Lock Record(Lock Record:JVM检测到当前对象是无锁状态,则会在当前线程的栈帧中创建一个名为LOCKRECOD表空间用于copy Mark word 中的数据),如果更新成功,则轻量级锁获取成功,记录锁状态为轻量级锁;否则,说明已经有线程获得了轻量级锁,目前发生了锁竞争(不适合继续使用轻量级锁),接下来膨胀为重量级锁。
当然,由于轻量级锁天然瞄准不存在锁竞争的场景,如果存在锁竞争但不激烈,仍然可以用自旋锁优化,自旋失败后再膨胀为重量级锁。
缺点:同自旋锁相似:如果锁竞争激烈,那么轻量级将很快膨胀为重量级锁,那么维持轻量级锁的过程就成了浪费。
重量级锁
轻量级锁膨胀之后,就升级为重量级锁了。重量级锁是依赖对象内部的monitor锁来实现的,而monitor又依赖操作系统的MutexLock(互斥锁)来实现的,所以重量级锁也被成为互斥锁。
当轻量级所经过锁撤销等步骤升级为重量级锁之后,它的Markword部分数据大体如下
为什么说重量级锁开销大呢
主要是,当系统检查到锁是重量级锁之后,会把等待想要获得锁的线程进行阻塞,被阻塞的线程不会消耗cup。但是阻塞或者唤醒一个线程时,都需要操作系统来帮忙,这就需要从用户态转换到内核态,而转换状态是需要消耗很多时间的,有可能比用户执行代码的时间还要长。
这就是说为什么重量级线程开销很大的。
互斥锁(重量级锁)也称为阻塞同步、悲观锁
总结
偏向所锁,轻量级锁都是乐观锁,重量级锁是悲观锁。
一个对象刚开始实例化的时候,没有任何线程来访问它的时候。它是可偏向的,意味着,它现在认为只可能有一个线程来访问它,所以当第一个
线程来访问它的时候,它会偏向这个线程,此时,对象持有偏向锁。偏向第一个线程,这个线程在修改对象头成为偏向锁的时候使用CAS操作,并将
对象头中的ThreadID改成自己的ID,之后再次访问这个对象时,只需要对比ID,不需要再使用CAS在进行操作。
一旦有第二个线程访问这个对象,因为偏向锁不会主动释放,所以第二个线程可以看到对象时偏向状态,这时表明在这个对象上已经存在竞争了,检查原来持有该对象锁的线程是否依然存活,如果挂了,则可以将对象变为无锁状态,然后重新偏向新的线程,如果原来的线程依然存活,则马上执行那个线程的操作栈,检查该对象的使用情况,如果仍然需要持有偏向锁,则偏向锁升级为轻量级锁,(偏向锁就是这个时候升级为轻量级锁的)。如果不存在使用了,则可以将对象回复成无锁状态,然后重新偏向。
轻量级锁认为竞争存在,但是竞争的程度很轻,一般两个线程对于同一个锁的操作都会错开,或者说稍微等待一下(自旋),另一个线程就会释放锁。但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁膨胀为重量级锁,重量级锁使除了拥有锁的线程以外的线程都阻塞,防止CPU空转。