大数据之Hadoop-MapReduce(3)

第4章 Hadoop数据压缩

4.1 概述

压缩技术能够有效减少底层存储系统(HDFS)读写字节数。压缩提高了网络带宽和磁盘空间的效率。在运行MR程序时,I/O操作、网络数据传输、 Shuffle和Merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,因此,使用数据压缩显得非常重要。

鉴于磁盘I/O和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘I/O和网络传输非常有帮助。可以在任意MapReduce阶段启用压缩。不过,尽管压缩与解压操作的CPU开销不高,其性能的提升和资源的节省并非没有代价。

压缩是提高Hadoop运行效率的一种优化策略。通过对Mapper、Reducer运行过程的数据进行压缩,以减少磁盘IO,提高MR程序运行速度。

注意:采用压缩技术减少了磁盘IO,但同时增加了CPU运算负担。所以,压缩特性运用得当能提高性能,但运用不当也可能降低性能。

压缩基本原则:
(1)运算密集型的job,少用压缩
(2)IO密集型的job,多用压缩

4.2 MR支持的压缩编码

压缩格式 hadoop自带? 算法 文件扩展名 是否可切分 换成压缩格式后,原来的程序是否需要修改
DEFLATE 是,直接使用 DEFLATE .deflate 和文本处理一样,不需要修改
Gzip 是,直接使用 DEFLATE .gz 和文本处理一样,不需要修改
bzip2 是,直接使用 bzip2 .bz2 和文本处理一样,不需要修改
LZO 否,需要安装 LZO .lzo 需要建索引,还需要指定输入格式
Snappy 否,需要安装 Snappy .snappy 和文本处理一样,不需要修改

为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示。

压缩格式 对应的编码/解码器
DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io.compress.BZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec
Snappy org.apache.hadoop.io.compress.SnappyCodec

压缩性能的比较

压缩算法 原始文件大小 压缩文件大小 压缩速度 解压速度
gzip 8.3GB 1.8GB 17.5MB/s 58MB/s
bzip2 8.3GB 1.1GB 2.4MB/s 9.5MB/s
LZO 8.3GB 2.9GB 49.3MB/s 74.6MB/s

http://google.github.io/snappy/

On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

4.3 压缩方式选择

4.3.1 Gzip压缩

优点:压缩率比较高,而且压缩/解压速度也比较快;Hadoop本身支持,在应用中处理Gzip格式的文件就和直接处理文本一样;大部分Linux系统都自带Gzip命令,使用方便。

缺点:不支持Split。

应用场景:当每个文件压缩之后在130M以内的(1个块大小内),都可以考虑用Gzip压缩格式。例如说一天或者一个小时的日志压缩成一个Gzip文件。

4.3.2 Bzip2压缩

优点:支持Split;具有很高的压缩率,比Gzip压缩率都高;Hadoop本身自带,使用方便。

缺点:压缩/解压速度慢。

应用场景:适合对速度要求不高,但需要较高的压缩率的时候;或者输出之后的数据比较大,处理之后的数据需要压缩存档减少磁盘空间并且以后数据用得比较少的情况;或者对单个很大的文本文件想压缩减少存储空间,同时又需要支持Split,而且兼容之前的应用程序的情况。

4.3.3 Lzo压缩

优点:压缩/解压速度也比较快,合理的压缩率;支持Split,是Hadoop中最流行的压缩格式;可以在Linux系统下安装lzop命令,使用方便。

缺点:压缩率比Gzip要低一些;Hadoop本身不支持,需要安装;在应用中对Lzo格式的文件需要做一些特殊处理(为了支持Split需要建索引,还需要指定InputFormat为Lzo格式)。

应用场景:一个很大的文本文件,压缩之后还大于200M以上的可以考虑,而且单个文件越大,Lzo优点越越明显。

4.3.4 Snappy压缩

优点:高速压缩速度和合理的压缩率。

缺点:不支持Split;压缩率比Gzip要低;Hadoop本身不支持,需要安装。

应用场景:当MapReduce作业的Map输出的数据比较大的时候,作为Map到Reduce的中间数据的压缩格式;或者作为一个MapReduce作业的输出和另外一个MapReduce作业的输入。

4.4 压缩位置选择

压缩可以在MapReduce作用的任意阶段启用。

4.5 压缩参数配置

要在Hadoop中启用压缩,可以配置如下参数:

参数 默认值 阶段 建议
io.compression.codecs (在core-site.xml中配置) org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec 输入压缩 Hadoop使用文件扩展名判断是否支持某种编解码器
mapreduce.map.output.compress(在mapred-site.xml中配置) false mapper输出 这个参数设为true启用压缩
mapreduce.map.output.compress.codec(在mapred-site.xml中配置) org.apache.hadoop.io.compress.DefaultCodec mapper输出 企业多使用LZO或Snappy编解码器在此阶段压缩数据
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) false reducer输出 这个参数设为true启用压缩
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) org.apache.hadoop.io.compress. DefaultCodec reducer输出 使用标准工具或者编解码器,如gzip和bzip2
mapreduce.output.fileoutputformat.compress.type(在mapred-site.xml中配置) RECORD reducer输出 SequenceFile输出使用的压缩类型:NONE和BLOCK

4.6 压缩实操案例

4.6.1 数据流的压缩和解压缩

CompressionCodec有两个方法可以用于轻松地压缩或解压缩数据。

要想对正在被写入一个输出流的数据进行压缩,我们可以使用createOutputStream(OutputStreamout)方法创建一个CompressionOutputStream,将其以压缩格式写入底层的流。

相反,要想对从输入流读取而来的数据进行解压缩,则调用createInputStream(InputStreamin)函数,从而获得一个CompressionInputStream,从而从底层的流读取未压缩的数据。

测试一下如下压缩方式:

DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io.compress.BZip2Codec
package com.jackyan.mapreduce.compress;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.CompressionInputStream;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.*;

public class TestCompress {

    public static void main(String[] args) throws Exception {

        compress("h:/input/hello.txt","org.apache.hadoop.io.compress.BZip2Codec");
        //      decompress("h:/hello.txt.bz2");
    }

    // 1、压缩
    private static void compress(String filename, String method) throws Exception {

        // (1)获取输入流
        FileInputStream fis = new FileInputStream(new File(filename));

        Class codecClass = Class.forName(method);

        CompressionCodec codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, new Configuration());

        // (2)获取输出流
        FileOutputStream fos = new FileOutputStream(new File(filename + codec.getDefaultExtension()));
        CompressionOutputStream cos = codec.createOutputStream(fos);

        // (3)流的对拷
        IOUtils.copyBytes(fis, cos, 1024*1024*5, false);

        // (4)关闭资源
        cos.close();
        fos.close();
        fis.close();
    }

    // 2、解压缩
    private static void decompress(String filename) throws FileNotFoundException, IOException {

        // (0)校验是否能解压缩
        CompressionCodecFactory factory = new CompressionCodecFactory(new Configuration());

        CompressionCodec codec = factory.getCodec(new Path(filename));

        if (codec == null) {
            System.out.println("cannot find codec for file " + filename);
            return;
        }

        // (1)获取输入流
        CompressionInputStream cis = codec.createInputStream(new FileInputStream(new File(filename)));

        // (2)获取输出流
        FileOutputStream fos = new FileOutputStream(new File(filename + ".decoded"));

        // (3)流的对拷
        IOUtils.copyBytes(cis, fos, 1024*1024*5, false);

        // (4)关闭资源
        cis.close();
        fos.close();
    }
}

4.6.2 Map输出端采用压缩

即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对Map任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到Reduce节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可

Hadoop源码支持的压缩格式有:BZip2Codec 、DefaultCodec

Driver开启map端输出压缩,Mapper和Reducer保持不变

    // 开启map端输出压缩
    configuration.setBoolean("mapreduce.map.output.compress", true);
    // 设置map端输出压缩方式
    configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);

4.6.3 Reduce输出端采用压缩

Driver开启reduce端输出压缩,Mapper和Reducer保持不变

    // 设置reduce端输出压缩开启
    FileOutputFormat.setCompressOutput(job, true);
        
    // 设置压缩的方式
    FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 
    // FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class); 
    // FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class); 

第5章 Yarn资源调度器

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。

5.1 Yarn基本架构

YARN主要由ResourceManager、NodeManager、ApplicationMaster和Container等组件构成。

5.2 Yarn工作机制

(1)MR程序提交到客户端所在的节点。
(2)YarnRunner向ResourceManager申请一个Application。
(3)RM将该应用程序的资源路径返回给YarnRunner。
(4)该程序将运行所需资源提交到HDFS上。
(5)程序资源提交完毕后,申请运行mrAppMaster。
(6)RM将用户的请求初始化成一个Task。
(7)其中一个NodeManager领取到Task任务。
(8)该NodeManager创建容器Container,并产生MRAppmaster。
(9)Container从HDFS上拷贝资源到本地。
(10)MRAppmaster向RM 申请运行MapTask资源。
(11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
(13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
(14)ReduceTask向MapTask获取相应分区的数据。
(15)程序运行完毕后,MR会向RM申请注销自己。

5.3 作业提交全过程

(1)作业提交
第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
第2步:Client向RM申请一个作业id。
第3步:RM给Client返回该job资源的提交路径和作业id。
第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
第5步:Client提交完资源后,向RM申请运行MrAppMaster。

(2)作业初始化
第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
第7步:某一个空闲的NM领取到该Job。
第8步:该NM创建Container,并产生MRAppmaster。
第9步:下载Client提交的资源到本地。

(3)任务分配
第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。

(4)任务运行
第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第14步:ReduceTask向MapTask获取相应分区的数据。
第15步:程序运行完毕后,MR会向RM申请注销自己。

(5)进度和状态更新

YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。

(6)作业完成

除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。

作业提交过程之MapReduce

5.4 资源调度器

目前,Hadoop作业调度器主要有三种:FIFO、Capacity Scheduler和Fair Scheduler。Hadoop2.7.2默认的资源调度器是Capacity Scheduler。

具体设置详见:yarn-default.xml文件

<property>
    <description>The class to use as the resource scheduler.</description>
    <name>yarn.resourcemanager.scheduler.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>

1 先进先出调度器(FIFO)

2 容量调度器(Capacity Scheduler)

3 公平调度器(Fair Scheduler)

5.5 任务的推测执行

1 作业完成时间取决于最慢的任务完成时间
一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。

2 推测执行机制
发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。

3.执行推测任务的前提条件
(1)每个Task只能有一个备份任务
(2)当前Job已完成的Task必须不小于0.05(5%)
(3)开启推测执行参数设置。mapred-site.xml文件中默认是打开的。

<property>
    <name>mapreduce.map.speculative</name>
    <value>true</value>
    <description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
</property>

<property>
    <name>mapreduce.reduce.speculative</name>
    <value>true</value>
    <description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
</property>

4 不能启用推测执行机制情况
(1)任务间存在严重的负载倾斜;
(2)特殊任务,比如任务向数据库中写数据。

5 算法原理
假设某一时刻,任务T的执行进度为progress,则可通过一定的算法推测出该任务的最终完成时刻estimateEndTime。另一方面,如果此刻为该任务启动一个备份任务,则可推断出它可能的完成时刻estimateEndTime`,于是可得出以下几个公式:

estimatedRunTime = (currentTimestamp   -    taskStartTime)   /     progress
推测运行时间(60s) = (当前时刻(6)        -    任务启动时刻(0)) /     任务运行比例(10%)
estimateEndTime   =   estimatedRunTime        +      taskStartTime
推测执行完时刻 60  =   推测运行时间(60s) +     任务启动时刻(0)
estimateEndTime`         = currentTimestamp     +    averageRunTime
备份任务推测完成时刻(16)    =  当前时刻(6)       +   运行完成任务的平均时间(10s)

1)MR总是选择(estimateEndTime- estimateEndTime ` )差值最大的任务,并为之启动备份任务。
2)为了防止大量任务同时启动备份任务造成的资源浪费,MR为每个作业设置了同时启动的备份任务数目上限。
3 )推测执行机制实际上采用了经典的优化算法:以空间换时间,它同时启动多个相同任务处理相同的数据,并让这些任务竞争以缩短数据处理时间。显然,这种方法需要占用更多的计算资源。在集群资源紧缺的情况下,应合理使用该机制,争取在多用少量资源的情况下,减少作业的计算时间。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容