Java大数据学习~Hadoop初识三Yarn模式

在上篇文章中我们简单的学习了HDFS简单架构,还有最重要的读写流程。我们都知道在如今的Hadoop中主要有三个重要的执行管理器。一个HDFS,一个MapReduce,还有就是我们今天要看的 YARN。

2.0以前的Hadoop

在2.0以前的hadoop中是没有Yarn这个模式管理的。大部分都是独自作战。Hbase做自己的,Spark也是做自己的,等等。这样的话就会造成资源的浪费,不能充分的把资源给利用上。特别是在1.x的版本上容易出现单点故障,不容易扩展的情况。


1.x
  1. 在这里Client的请求都会通过1个JobTracker来分发任务,如果我们的这个JobTracker出现异常。整个集群就没法参与正常工作。
  2. 在JobTracker 过多的TaskScheduler 集中过来,容易造成内存,cpu不够用的情况。增加了任务执行失败的风险。


    慕课课程

    因为这些情况,随着发展,Hadoop需要更新的一代管理引擎来帮助我们管理集群-YARN引擎

在2.0的YARN

在新的业务驱动下,发展起来的YARN替代原先的模式。将原先浪费的资源进行合并,共同管理建立在一个模式管理下


慕课网

新的YARN模式如下


yarn结构
新的架构图
  1. 从图中我们可以看到 原先的JobTracker 被拆分成 资源管理和任务调度监控。
  2. 我们来看下如今的架构
  • ResourceManager : 在集群中提供资源的统一管理和调度。并且接收来自客户端的请求。同时不停的接收来自 DataNode上的心跳信息。并且对集群进行管理。
  • NodeManager :
    1. 在整个集群中会有多个该节点。主要用来维护自己节点上资源的管理和使用。
    2. 定时向ResourceManager 汇报自己资源的使用情况。并且 接收来自ResourceManager 各种命令
    3. 启动我们在图中看到的ApplicationMaster.
  • ApplicationMaster :
    1. 该ApplicationMaster 对应我们提交的程序,该程序可以来自Spark,Hbase , MapReduce.该master向管理器YARN申请资源。然后供应用程序使用。
    2. 分配任务给接下来的Container 。包含启动,停止任务。
  • Container
    1. 封装了CPU ,Memory 等资源的容器。
  • Client
    1. 通过client来提交任务,进行任务的开始与结束。并且查询任务的执行进度等情况。

了解了这几个功能名称的作用,我们来看下整个任务执行流程是怎么样的。


流程图
  1. 从Client端发送一个 请求到我们的ResourceManager 上。其中内容应该包含ApplicationMaster,ApplicationMaster的启动命令。本身应用程序的内容。
  2. ResourceManager 分配任务到NodeManager上
  3. NodeManager根据配置信息进行处理启动ApplicationMaster 。
    4.注册到ResourceManager,并且申请到资源返回到我们的ApplicationMaster 上。
    5.根据申请到的资源注册到NodeManger上。
  4. NodeManager 启动对应的Container上。
    在这之间会通过心跳进行任务汇报。然后任务汇报后。进行任务管理。

总结

整个yarn的流程和新的结构大概就是如此。新模式解决了原先的单点问题。并且挺高了高可用性和扩展性。一套集群环境就能供多个应用程序使用。YARN模式帮助我们解决掉了资源管理的问题,程序员关注业务开发即可。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容