[算法导论]-十大排序算法

排序算法总结

image.png

image.png

一、冒泡排序

冒泡排序每次找出一个最大的元素,因此需要遍历 n-1 次。还有一种优化算法,就是立一个flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。

什么时候最快(Best Cases):

当输入的数据已经是正序时。

什么时候最慢(Worst Cases):

当输入的数据是反序时。

冒泡排序动图演示:
Fig2
冒泡排序 Python 代码实现:
def bubbleSort(nums):
    for i in range(len(nums) - 1): # 遍历 len(nums)-1 次
        for j in range(len(nums) - i - 1): # 已排好序的部分不用再次遍历
            if nums[j] > nums[j+1]:
                nums[j], nums[j+1] = nums[j+1], nums[j] # Python 交换两个数不用中间变量
    return nums

二、 选择排序(Selection Sort)


选择排序须知:

选择排序不受输入数据的影响,即在任何情况下时间复杂度不变。选择排序每次选出最小的元素,因此需要遍历 n-1 次。

选择排序动图演示:
image
选择排序 Python 代码实现:
def selectionSort(nums):
    for i in range(len(nums) - 1):  # 遍历 len(nums)-1 次
        minIndex = i
        for j in range(i + 1, len(nums)):
            if nums[j] < nums[minIndex]:  # 更新最小值索引
                minIndex = j  
        nums[i], nums[minIndex] = nums[minIndex], nums[i] # 把最小数交换到前面
    return nums

三、插入排序(Insertion Sort)


插入排序须知:

插入排序如同打扑克一样,每次将后面的牌插到前面已经排好序的牌中。插入排序有一种优化算法,叫做拆半插入。因为前面是局部排好的序列,因此可以用折半查找的方法将牌插入到正确的位置,而不是从后往前一一比对。折半查找只是减少了比较次数,但是元素的移动次数不变,所以时间复杂度仍为 O(n^2) !

插入排序动图演示:
image
插入排序 Python 代码实现:
def insertionSort(nums):
    for i in range(len(nums) - 1):  # 遍历 len(nums)-1 次
        curNum, preIndex = nums[i+1], i  # curNum 保存当前待插入的数
        while preIndex >= 0 and curNum < nums[preIndex]: # 将比 curNum 大的元素向后移动
            nums[preIndex + 1] = nums[preIndex]
            preIndex -= 1
        nums[preIndex + 1] = curNum  # 待插入的数的正确位置   
    return nums

四、希尔排序(Shell Sort)


希尔排序须知:

希尔排序是插入排序的一种更高效率的实现。它与插入排序的不同之处在于,它会优先比较距离较远的元素。

【例子】对于待排序列 {44,12,59,36,62,43,94,7,35,52,85},我们可设定增量序列为 {5,3,1}。

【解析】第一个增量为 5,因此 {44,43,85}、{12,94}、{59,7}、{36,35}、{62,52} 分别隶属于同一个子序列,子序列内部进行插入排序;然后选取第二个增量3,因此 {43,35,94,62}、{12,52,59,85}、{7,44,36} 分别隶属于同一个子序列;最后一个增量为 1,这一次排序相当于简单插入排序,但是经过前两次排序,序列已经基本有序,因此此次排序时间效率就提高了很多。希尔排序过程如下:

image

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者 Robert Sedgewick 提出的。在这里,我就使用了这种方法。

希尔排序 Python 代码实现:
def shellSort(nums):
    lens = len(nums)
    gap = 1  
    while gap < lens // 3:
        gap = gap * 3 + 1  # 动态定义间隔序列
    while gap > 0:
        for i in range(gap, lens):
            curNum, preIndex = nums[i], i - gap  # curNum 保存当前待插入的数
            while preIndex >= 0 and curNum < nums[preIndex]:
                nums[preIndex + gap] = nums[preIndex] # 将比 curNum 大的元素向后移动
                preIndex -= gap
            nums[preIndex + gap] = curNum  # 待插入的数的正确位置
        gap //= 3  # 下一个动态间隔
    return nums

五、归并排序(Merge Sort)


归并排序须知:

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  1. 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第2种方法)
  2. 自下而上的迭代

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序动图演示:
image
归并排序 Python 代码实现:
def mergeSort(nums):
    # 归并过程
    def merge(left, right):
        result = []  # 保存归并后的结果
        i = j = 0
        while i < len(left) and j < len(right):
            if left[i] <= right[j]:
                result.append(left[i])
                i += 1
            else:
                result.append(right[j])
                j += 1
        result = result + left[i:] + right[j:] # 剩余的元素直接添加到末尾
        return result
    # 递归过程
    if len(nums) <= 1:
        return nums
    mid = len(nums) // 2
    left = mergeSort(nums[:mid])
    right = mergeSort(nums[mid:])
    return merge(left, right)

六、快速排序(Quick Sort)


快速排序须知:

又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。它是处理大数据最快的排序算法之一,虽然 Worst Case 的时间复杂度达到了 O(n²),但是在大多数情况下都比平均时间复杂度为 O(n log n) 的排序算法表现要更好,因为 O(n log n) 记号中隐含的常数因子很小,而且快速排序的内循环比大多数排序算法都要短小,这意味着它无论是在理论上还是在实际中都要更快,比复杂度稳定等于 O(n log n) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。它的主要缺点是非常脆弱,在实现时要非常小心才能避免低劣的性能。

快速排序动图演示:
image
快速排序 Python 代码实现:
def quickSort(nums):  # 这种写法的平均空间复杂度为 O(nlogn)
    if len(nums) <= 1:
        return nums
    pivot = nums[0]  # 基准值
    left = [nums[i] for i in range(1, len(nums)) if nums[i] < pivot] 
    right = [nums[i] for i in range(1, len(nums)) if nums[i] >= pivot]
    return quickSort(left) + [pivot] + quickSort(right)

'''
@param nums: 待排序数组
@param left: 数组上界
@param right: 数组下界
'''
def quickSort2(nums, left, right):  # 这种写法的平均空间复杂度为 O(logn) 
    # 分区操作
    def partition(nums, left, right):
        pivot = nums[left]  # 基准值
        while left < right:
            while left < right and nums[right] >= pivot:
                right -= 1
            nums[left] = nums[right]  # 比基准小的交换到前面
            while left < right and nums[left] <= pivot:
                left += 1
            nums[right] = nums[left]  # 比基准大交换到后面
        nums[left] = pivot # 基准值的正确位置,也可以为 nums[right] = pivot
        return left  # 返回基准值的索引,也可以为 return right
    # 递归操作
    if left < right:
        pivotIndex = partition(nums, left, right)
        quickSort2(nums, left, pivotIndex - 1)  # 左序列
        quickSort2(nums, pivotIndex + 1, right) # 右序列
    return nums

七、堆排序(Heap Sort)


堆排序须知:

堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大根堆:每个节点的值都大于或等于其子节点的值,用于升序排列;
  2. 小根堆:每个节点的值都小于或等于其子节点的值,用于降序排列。

如下图所示,首先将一个无序的序列生成一个最大堆,如图(a)所示。接下来我们不需要将堆顶元素输出,只要将它与堆的最后一个元素对换位置即可,如图(b)所示。这时我们确知最后一个元素 99 一定是递增序列的最后一个元素,而且已经在正确的位置上。 现在问题变成了如何将剩余的元素重新生成一个最大堆——也很简单,只要依次自上而下进行过滤,使其符合最大堆的性质。图(c)是调整后形成的新的最大堆。要注意的是,99 已经被排除在最大堆之外,即在调整的时候,堆中元素的个数应该减 1 。结束第 1 轮调整后,再次将当前堆中的最后一个元素 22 与堆顶元素换位,如图(d)所示,再继续调整成新的最大堆……如此循环,直到堆中只剩 1 个元素,即可停止,得到一个从小到大排列的有序序列。

image
堆排序动图演示:
image
堆排序 Python 代码实现:
# 大根堆(从小打大排列)
def heapSort(nums):
    # 调整堆
    def adjustHeap(nums, i, size):
        # 非叶子结点的左右两个孩子
        lchild = 2 * i + 1
        rchild = 2 * i + 2
        # 在当前结点、左孩子、右孩子中找到最大元素的索引
        largest = i 
        if lchild < size and nums[lchild] > nums[largest]: 
            largest = lchild 
        if rchild < size and nums[rchild] > nums[largest]: 
            largest = rchild 
        # 如果最大元素的索引不是当前结点,把大的结点交换到上面,继续调整堆
        if largest != i: 
            nums[largest], nums[i] = nums[i], nums[largest] 
            # 第 2 个参数传入 largest 的索引是交换前大数字对应的索引
            # 交换后该索引对应的是小数字,应该把该小数字向下调整
            adjustHeap(nums, largest, size)
    # 建立堆
    def builtHeap(nums, size):
        for i in range(len(nums)//2)[::-1]: # 从倒数第一个非叶子结点开始建立大根堆
            adjustHeap(nums, i, size) # 对所有非叶子结点进行堆的调整
        # print(nums)  # 第一次建立好的大根堆
    # 堆排序 
    size = len(nums)
    builtHeap(nums, size) 
    for i in range(len(nums))[::-1]: 
        # 每次根结点都是最大的数,最大数放到后面
        nums[0], nums[i] = nums[i], nums[0] 
        # 交换完后还需要继续调整堆,只需调整根节点,此时数组的 size 不包括已经排序好的数
        adjustHeap(nums, 0, i) 
    return nums  # 由于每次大的都会放到后面,因此最后的 nums 是从小到大排列

八、计数排序(Counting Sort)


有这样一道排序题:数组里有20个随机数,取值范围为从0到10,要求用最快的速度把这20个整数从小到大进行排序。

第一时间你可能会想使用快速排序,因为快排的时间复杂度只有O(nlogn)。但是这种方法还是不够快,有没有比O(nlogn)更快的排序方法呢?你可能会有疑问:O(nlogn)已经是最快的排序算法了,怎么可能还有更快的排序方法?

让我们先来回顾一下经典的排序算法,无论是归并排序,冒泡排序还是快速排序等等,都是基于元素之间的比较来进行排序的。但是有一种特殊的排序算法叫计数排序,这种排序算法不是基于元素比较,而是利用数组下标来确定元素的正确位置。

在刚才的题目里,随即整数的取值范围是从0到10,那么这些整数的值肯定是在0到10这11个数里面。于是我们可以建立一个长度为11的数组,数组下标从0到10,元素初始值全为0,如下所示:

image

先假设20个随机整数的值是:9, 3, 5, 4, 9, 1, 2, 7, 8,1,3, 6, 5, 3, 4, 0, 10, 9, 7, 9

让我们先遍历这个无序的随机数组,每一个整数按照其值对号入座,对应数组下标的元素进行加1操作。

比如第一个整数是9,那么数组下标为9的元素加1:

image

第二个整数是3,那么数组下标为3的元素加1:

image

继续遍历数列并修改数组......

最终,数列遍历完毕时,数组的状态如下:

image

数组中的每一个值,代表了数列中对应整数的出现次数。

有了这个统计结果,排序就很简单了,直接遍历数组,输出数组元素的下标值,元素的值是几,就输出几次:

0, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 10

显然,这个输出的数列已经是有序的了。

这就是计数排序的基本过程,它适用于一定范围的整数排序在取值范围不是很大的情况下,它的性能在某些情况甚至快过那些O(nlogn)的排序,例如快速排序、归并排序。

计数排序须知:

计数排序要求输入数据的范围在 [0,N-1] 之间,则可以开辟一个大小为 N 的数组空间,将输入的数据值转化为键存储在该数组空间中,数组中的元素为该元素出现的个数。它是一种线性时间复杂度的排序。

计数排序动图演示:
image
计数排序 Python 代码实现:
def countingSort(nums):
    bucket = [0] * (max(nums) + 1) # 桶的个数
    for num in nums:  # 将元素值作为键值存储在桶中,记录其出现的次数
        bucket[num] += 1
    i = 0  # nums 的索引
    for j in range(len(bucket)):
        while bucket[j] > 0:
            nums[i] = j
            bucket[j] -= 1
            i += 1
    return nums

九、桶排序(Bucket Sort)


一句话总结:划分多个范围相同的区间,每个子区间自排序,最后合并。
元素分布在桶中:

image

然后,元素在每个桶中排序:

image
桶排序须知:

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量
  2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

什么时候最快(Best Cases):

当输入的数据可以均匀的分配到每一个桶中

什么时候最慢(Worst Cases):

当输入的数据被分配到了同一个桶中

桶排序 Python 代码实现:
def bucketSort(nums, defaultBucketSize = 5):
    maxVal, minVal = max(nums), min(nums)
    bucketSize = defaultBucketSize  # 如果没有指定桶的大小,则默认为5
    bucketCount = (maxVal - minVal) // bucketSize + 1  # 数据分为 bucketCount 组
    buckets = []  # 二维桶
    for i in range(bucketCount):
        buckets.append([])
    # 利用函数映射将各个数据放入对应的桶中
    for num in nums:
        buckets[(num - minVal) // bucketSize].append(num)
    nums.clear()  # 清空 nums
    # 对每一个二维桶中的元素进行排序
    for bucket in buckets:
        insertionSort(bucket)  # 假设使用插入排序
        nums.extend(bucket)    # 将排序好的桶依次放入到 nums 中
    return nums

十、基数排序(Radix Sort)


基数排序须知:

基数排序是桶排序的一种推广,它所考虑的待排记录包含不止一个关键字。例如对一副牌的整理,可将每张牌看作一个记录,包含两个关键字:花色、面值。一般我们可以将一个有序列是先按花色划分为四大块,每一块中又再按面值大小排序。这时“花色”就是一张牌的“最主位关键字”,而“面值”是“最次位关键字”。

基数排序有两种方法:

  1. MSD (主位优先法):从高位开始进行排序
  2. LSD (次位优先法):从低位开始进行排序
LSD基数排序动图演示:
image
基数排序 Python 代码实现:
# LSD Radix Sort
def radixSort(nums):
    mod = 10
    div = 1
    mostBit = len(str(max(nums)))  # 最大数的位数决定了外循环多少次
    buckets = [[] for row in range(mod)] # 构造 mod 个空桶
    while mostBit:
        for num in nums:  # 将数据放入对应的桶中
            buckets[num // div % mod].append(num)
        i = 0  # nums 的索引
        for bucket in buckets:  # 将数据收集起来
            while bucket:
                nums[i] = bucket.pop(0) # 依次取出
                i += 1
        div *= 10
        mostBit -= 1
    return nums

补充:外部排序


外部排序是指大文件排序,即待排序的数据记录以文件的形式存储在外存储器上。由于文件中的记录很多、信息容量庞大,所以整个文件所占据的存储单元往往会超过了计算机的内存量,因此,无法将整个文件调入内存中进行排序。于是,在排序过程中需进行多次的内外存之间的交换。在实际应用中,由于使用的外设不一致,通常可以分为磁盘文件排序和磁带文件排序两大类。

外部排序基本上由两个相对独立的阶段组成。首先,按可用内存大小,将外存上含 N 个记录的文件分成若干长度为 L(<N) 的子文件,依次读入内存,利用内部排序算法进行排序。然后,将排序后的文件写入外存,通常将这些文件称为归并段(Run)或“顺串”;对这些归并段进行逐步归并,最终得到整个有序文件。可见外部排序的基本方法是归并排序法,下面的例子给出了一个简单的外部排序解决过程。

【例子】给定磁盘上有6大块记录需要排序,而计算机内存最多只能对3个记录块进行内排序,则外部排序的过程如下图所示。

image

【解析】首先将连续的3大块记录读入内存,用任何一种内部排序算法完成排序,再写回磁盘。经过2次3大块记录的内部排序,得到上图(a)的结果。然后另用一个可容纳6大块记录的周转盘,辅助最后的归并。方法是将内存分成3块,其中2块用于输入,1块用于输出,指定一个输入块只负责读取一个归并段中的记录,如上图(b)所示。归并步骤为:

当任一输入块为空时,归并暂停,将相应归并段中的一块信息写入内存
将内存中2个输入块中的记录逐一归并入输出块
当输出块写满时,归并暂停,将输出块中的记录写入周转盘
如此可将2个归并段在周转盘上归并成一个有序的归并段。上例的解决方法是最简单的归并法,事实上外部排序的效率还可以进一步提高。要提高外排的效率,关键要解决以下4个问题:

  • 如何减少归并轮数
  • 如何有效安排内存中的输入、输出块,使得机器的并行处理能力被最大限度利用
  • 如何有效生成归并段
  • 如何将归并段进行有效归并

针对这四大问题,人们设计了多种解决方案,例如釆用多路归并取代简单的二路归并,就可以减少归并轮数;例如在内存中划分出2个输出块,而不是只用一个,就可以设计算法使得归并排序不会因为磁盘的写操作而暂停,达到归并和写周转盘同时并行的效果;例如通过一种“败者树”的数据结构,可以一次生成2倍于内存容量的归并段;例如利用哈夫曼树的贪心策略选择归并次序,可以耗费最少的磁盘读写时间等。

其他一些比较:


基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
基数排序:根据键值的每位数字来分配桶
计数排序:每个桶只存储单一键值
桶排序:每个桶存储一定范围的数值

哪些排序算法可以在未结束排序时找出第 k 大元素?

冒泡、选择、堆排序、快排(想想为什么?)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容