【火炉炼AI】机器学习031-KNN回归器模型的构建

【火炉炼AI】机器学习031-KNN回归器模型的构建

(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )

在上一篇文章中我们学习了构建KNN分类器模型,但是KNN不仅可以用于分类问题,还可以用于回归问题,本章我们来学习KNN回归模型的构建和训练。


1. 准备数据集

此处我们使用随机函数构建了序列型数据集,其产生方式是用函数np.sinc()来产生y值。

# 准备数据集,此处用随机的方式生成一些样本数据
amplitute=10
num_points=100
dataset_X=amplitute*np.random.rand(num_points,1)-0.5*amplitute
dataset_y=np.sinc(dataset_X).ravel()
dataset_y+=0.2*(0.5-np.random.rand(dataset_y.size))
print(dataset_X.shape)
print(dataset_y.shape)

用plt将该数据集绘制到图表中,可以看到如下结果。

数据集的分布情况


2. KNN回归模型的构建和训练

构建和训练KNN回归器与KNN分类器一样简单,如下代码。

# 构建KNN回归模型
from sklearn.neighbors import KNeighborsRegressor
K=8
KNN_regressor=KNeighborsRegressor(K,weights='distance')
KNN_regressor.fit(dataset_X,dataset_y)

虽然此处构建了KNN回归器并对该回归器进行了训练,可是怎么知道训练结果了?

如下我定义了一个绘图函数,可以用散点图的方式来绘制原始的数据集和预测之后的数据集

# 将回归器绘制到图中
def plot_regressor(regressor, X, y):
    # 将数据集绘制到图表中看看分布情况
    plt.scatter(X,y,color='k',marker='o',label='dataset')
    predicted=regressor.predict(X)
    plt.scatter(dataset_X,predicted,color='blue',marker='*',label='predicted')
    plt.xlim(X.min() - 1, X.max() + 1)
    plt.ylim(y.min() - 0.2, y.max() + 0.2)
    plt.legend()
    plt.show()

在本数据集上的表现可以从下图中看出:

KNN回归器在训练集上的表现

上面可以看出该KNN回归器在训练集上的表现貌似还不错,那么怎么用该训练完成的KNN回归器来预测新数据集了?如下我们先构建一序列新样本数据,然后将该样本数据绘制到图中,看看其分布是否符合原来的分布特性。

# 下面用本KNN回归器来预测新样本数据,如下
# 构建了10倍的新数据,并且建立第二个轴,用于KNNregressor.predict
new_samples=np.linspace(-0.5*amplitute, 0.5*amplitute, 10*num_points)[:, np.newaxis]
new_predicted=KNN_regressor.predict(new_samples)

# 把原始数据也画上来
plt.scatter(dataset_X,dataset_y,color='k',marker='o',label='dataset')
plt.plot(new_samples,new_predicted,color='r',linestyle='-',
         label='new_samples')
plt.legend()

得到的结果图貌似有非常严重的过拟合,如下图:

KNN回归器在新样本数据上的表现

########################小**********结###############################

1,KNN回归器的构建,训练,预测和KNN分类器基本一致。

2,我在使用KNN回归器对训练集进行预测,得到的预测值竟然和训练集中的Y值完全一致,一模一样,我反复检查了好多遍,还是这个结果,刚开始以为是K值太小导致过拟合,但是修改K后仍然有这种情况,这个现象不知道其他人遇到没有,我找了好久都没找到原因所在。

#################################################################


注:本部分代码已经全部上传到(我的github)上,欢迎下载。

参考资料:

1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容