HBase Compaction简述

原创文章,转载请注明原作地址:http://www.jianshu.com/p/895ab6511819
在介绍HBase Compaction之前,我们先来看一下HBase是如何存储和操作数据。

HBase数据存储

如上图所示,HRegionServer负责打开region,并创建对应的HRegion实例。当HRegion打开之后,它会为每个表的HColumnFamily创建一Store实例,ColumnFamily是用户在创建表时定义好的,ColumnFamily在每个region中和Store实例一一对应。每个Store实例包含一个或者多个StoreFile实例,StoreFile是对实际存储数据文件HFile的轻量级封装。每个Store对应一个MemStore(也就是写内存)。一个HRegionServer共享一个HLog实例。

当我们不停地往HBase中写入数据,也就是往MemStore写入数据,HBase会检查MemStore是否达到了需要刷写到磁盘的阈值(更多关于MemStore刷写的信息,可以参考HBase Reference Guide关于MemStore的介绍)。如果达到刷写的条件,MemStore中的记录就会被刷写到磁盘,形成一个新的StoreFile。可想而知,随着MemStore的不断刷写,会形成越来越多的磁盘文件。然而,对于HBase来说,当每个HStore仅包含一个文件时,才会达到最佳的读效率。因此HBase会通过合并已有的HFile来减少每次读数据的磁盘寻道时间,从而提高读速度,这个文件合并过程就称为Compaction。在这里需要说明的是,显然磁盘IO也是有代价的,如果使用不慎的话,不停地重写数据可能会导致网络和磁盘过载。换句话说,compaction其实就是用当前更高的磁盘IO来换取将来更低的磁盘寻道时间。因此,何时执行compaction,其实是一个相当复杂的决策。

HBase的compaction分为minor和major两种。minor合并负责将几个小文件合并成一个较大的文件;major合并是将一个HStore中的所有文件合并成一个文件。每次触发compact检查。系统会自动决定执行哪一种compaction(合并)。有三种情况会触发compact检查:

  1. MemStore被刷写到磁盘;
  2. 用户执行shell命令compact、major_compact或者调用了相应的API;
  3. HBase后台线程周期性触发检查。

除非是用户使用shell命令major_compact或者调用了majorCompact() API(这种情况会强制HBase执行major合并),在其他的触发情况下,HBase服务器会首先检查上次运行到现在是否达到一个指定的时限。如果没有达到这个时限,系统会选择执行minor合并,接着检查是否满足minor合并的条件。

major合并中会删除那些被标记为删除的数据、超过TTL(time-to-live)时限的数据,以及超过了版本数量限制的数据,将HStore中所有的HFile重写成一个HFile。如此多的工作量,理所当然地,major合并会耗费更多的资源,合并进行时也会影响HBase的响应时间。在HBase 0.96之前,默认每天对region做一次major compact,现在这个周期被改成了7天。然而,因为major compact可能导致某台server短时间内无法响应客户端的请求,如果无法容忍这种情况的话,可以关闭自动major compact,改成在请求低谷期手动触发这一操作。

minor合并的关键是,要如何挑选那些被合并的小文件?0.96版本之前,HBase的合并策略只有一个RatioBasedCompactionPolicy。这个策略中有三个重要参数:首先是hbase.hstore. compaction.min. sizehbase.hstore. compaction.max. size,在minor合并中,所有大小超过max. size的文件都会被排除在外,而min. size其实是一个阈值,minor合并会尽可能多地包括那些文件大小低于min. size的文件;在一次minor合并中,合并的文件数量最多不能超过hbase.hstore. compaction.max。另外,这个策略选择需要合并的文件时,总是优先选择较老的文件,也就意味着,沿着时间轴从最老的文件开始扫描,HBase会选择合并它扫描到的第一个满足合并策略的文件集合。
然而,实际操作中发现RatioBasedCompactionPolicy的表现并不好,因为这个策略假设越老的文件大小越大,而实际情况并不是这样,比如bulkLoad导入的新文件大小就很可能大于旧文件。于是,之后HBase加入了一个新策略ExploringCompactionPolicy。在这个策略中,HBase不是选择第一个符合合并策略的文件集合,而是考虑了所有符合要求的文件集合,并从中选择文件数量最多的集合(当有多个这样的文件集合时,选择总文件大小最小的那个集合)。这样导致的影响是,HBase总是选择合并会为IO带来最佳改善的文件集合。

随着compaction的进行,当所有文件中最大的那个超过了配置的最大存储文件大小,又会触发region拆分(如果region拆分没有被禁止的话)。

参考链接:
http://blog.cloudera.com/blog/2013/12/what-are-hbase-compactions/
https://hbase.apache.org/book.html#compaction
《HBase权威指南》

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容